

UNIVERSIDADE ESTADUAL DE MARINGÁ CENTRO DE CIÊNCIAS AGRÁRIAS Programa de Pós-Graduação em Ciência de Alimentos

INOVAÇÃO NA BIOTECNOLOGIA MEDIANTE APLICAÇÃO DE PROTEASES COMERCIAIS E ENZIMA RECOMBINANTE

THAMARA THAIANE DA SILVA CROZATTI

Maringá 2023

THAMARA THAIANE DA SILVA CROZATTI

INOVAÇÃO NA BIOTECNOLOGIA MEDIANTE APLICAÇÃO DE PROTEASES COMERCIAIS E ENZIMA RECOMBINANTE

Tese apresentada ao programa de Pós-Graduação em Ciência de Alimentos da Universidade Estadual de Maringá e ao Projeto de Doutorado em Inovação do CNPq, como parte dos requisitos para obtenção do título de doutor em Ciência de Alimentos.

Maringá 2023 Dados Internacionais de Catalogação-na-Publicação (CIP) (Biblioteca Central - UEM, Maringá - PR, Brasil)

 Crozatti, Thamara Thaiane da Silva
 Inovação na biotecnologia mediante aplicação de proteases comerciais e enzima recombinante / Thamara Thaiane da Silva Crozatti. -- Maringá, PR, 2023. 98 f.: il. color., figs., tabs.
 Orientadora: Profa. Dra. Graciette Matioli. Tese (Doutorado) - Universidade Estadual de Maringá, Centro de Ciências Agrárias, Programa de Pós-Graduação em Ciência de Alimentos, 2023.
 Hidrólise enzimática. 2. Farelo de soja. 3. Enzimas comerciais. 4. Ciclodextrinas. 5. Enzima recombinante. I. Matioli, Graciette , orient. II. Universidade Estadual de Maringá. Centro de Ciências Agrárias. Programa de Pós-Graduação em Ciência de Alimentos. III. Título.

Marinalva Aparecida Spolon Almeida - 9/1094

THAMARA THAIANE DA SILVA CROZATTI

"INOVAÇÃO NA BIOTECNOLOGIA MEDIANTE APLICAÇÃO DE PROTEASES COMERCIAIS E ENZIMA RECOMBINANTE"

Tese apresentada à Universidade Estadual de Maringá, como parte das exigências do Programa de Pósgraduação em Ciência de Alimentos, para obtenção do grau de Doutor em Ciência de Alimentos.

Prof. Dr. Eduardo César Meurer

Prof. Dr. Marco Aurelio Schuler de Oliveira

Prof. Dr. Daniel Tait Vareschini

Profa. Dra. Grasiele Scaramal Madrona

Profa. Dra. Graciette Matioli Orientadora

Maringá – 2023

Orientadora Profa. Dra. Graciette Matioli

BIOGRAFIA

Thamara Thaiane da Silva Crozzati, filha de Paulo Cleber da Silva e Olinda Aparecida dos Santos da Silva, nasceu em São Paulo - SP, no dia 06 de janeiro de 1994. Concluiu o ensino médio no Colégio Haya, em Osasco – SP. Possui graduação em Engenharia de Alimentos pela Universidade Estadual de Maringá, campus Maringá (2017), e mestrado em Ciência de Alimentos pela mesma universidade (2019). Possui especialização em Ciência e Tecnologia de Alimentos pela Universidade Federal de Pelotas (2022).

Em 2014, ingressou ao Laboratório de Biotecnologia Enzimática, pertencente ao Departamento de Farmácia da Universidade Estadual de Maringá, onde participou de Projetos de Inicação Científica, sob orientação da Profa. Dra. Graciette Matioli. Têm experiência na área de biotecnologia, com ênfase em biotecnologia enzimática, corantes naturais, peptídeos bioativos e resíduos industriais. Atualmente, é aluna regular do Programa de Doutorado em Inovação (DAI) do CNPq junto ao Programa de Pós-Graduação em Ciência de Alimentos da Universidade Estadual de Maringá também sob orientação da Profa. Dra. Graciette Matioli.

Dedico

À minha família, por sempre acreditar e ser a maior riqueza e força da minha vida...

"Acima de tudo se cumbram de amor, que é o vínculo perfeito." (Colossenses 3:14)

AGRADECIMENTOS

Primeiramente gostaria de agradecer a Deus, por me mostrar que com amor e fé tudo é possível. Sua luz e preceitos são responsáveis por guiar todos os meus passos e fortelecer diariamente meu coração e minha esperança.

Ao meu esposo João André por ser meu grande amor, melhor amigo, maior incentivador e por me impulsionar ser uma pessoa melhor todos os dias. Sem seu apoio e companheirismo essa caminhada seria muito mais difícil. Nossa família sempre será a razão de tudo.

Aos meus pais que nunca deixam de apoiar e acreditar nos sonhos de seus filhos. Sempre serão os grandes mestres da minha vida e terão para sempre o meu amor incondicional.

Aos meus irmãos, Bruna e Rodrigo, que nunca deixaram de me incentivar. A minha sogra, Dilma e suas irmãs (Denise, Darci, Dalila e Dalgisa), por todo amor e carinho, incorajamento, ensinamentos e principalmente por fortalecerem a minha fé.

À minha orientadora Profa. Dra. Graciette Matioli, pelas oportunidades, ensinamentos, aprendizados, paciência e sobretudo amizade. Suas pegadas estarão para sempre comigo e me faltam palavras para agradecer toda sua contribuição na minha formação profissional e pessoal.

Ao Prof. Dr. Eduardo César Meirer e todos os integrantes do Laboratório de Espectometria de Massas da Universidade Federal do Paraná, campus Jandaia do Sul, por abrir as portas do laboratório e me fazer sentir em casa, pela confiança e tantos ensinamentos. Que sorte a minha encontrar de pessoas de bem e bom coração nessa trajetória.

A todos os colegas que estão e já fizeram parte de Laboratório de Biotecnologia Enzimática e, atualmente, em especial para Juliana Miyoshi, Júlia Rosa, Paula Laurentis e Luciana Koga. Todos os momentos vividos contribuiram para que essa jornada fosse mais leve. Obrigada por toda ajuda, carinho e companhia constante e tão especial.

À empresa BRF e ao supervisor José Maluf por aceitar esse desafio e por todo suporte oferecido para o desenvolvimente desse estudo.

Agradeço, também, aos órgãos financiadores CNPq, CAPES e Fundação Araucária pelo suporte financeiro durante toda minha caminhada científica.

Por último, mas não menos importante, ao meu amigão Teddy, sua companhia preenche meu coração e completa nossa família.

APRESENTAÇÃO

Esta pesquisa foi desenvolvida com o apoio de uma equipe multidisciplinar por meio de parcerias estabelecidas entre o Laboratório de Biotecnologia Enzimática (DFA-UEM), empresa BRF S.A., Laboratório de Espectometria de Massas (UFPR) e Laboratório de Bioquímica de Procariotos (DBQ -UEM).

A presente tese de doutorado está apresentada na forma de dois artigos científicos:

- AUTORES: Thamara Thaiane da Silva Crozatti, Juliana Harumi Miyoshi, Angélica Priscila Parussolo Tonin, Larissa Fonseca Tomazini, Marco Aurélio Schuler Oliveira, Jose Uebi Maluf, Eduardo Cesar Meurer e Graciette Matioli. TÍTULO: Obtaining of bioactive di and tripeptides from enzymatic hydrolysis of Soybean meal and its protein isolate using Alcalase® and Neutrase® REVISTA: International Journal of Food Science and Technology. Artigo publicado (Fator de Impacto 3,612 – Qualis A2).
- AUTORES: Thamara Thaiane da Silva Crozatti, Paula Vitória Larentis, Vanderson Carvalho Fenelon, Juliana Harumi Miyoshi, Júlia Rosa de Brito, Giovanna da Silva Salinas, Beatriz de Oliveira Mazzotti, Giovanni Cesar Teles, Quirino Alves de Lima Neto e Graciette Matioli

TÍTULO: Challenges and alternatives for the production of cyclodextrins from the CGTase enzyme from recombinant *Bacillus subtilis* WB800.

REVISTA: Food Science and Technology.

Artigo publicado (Fator de Impacto 2,602 – Qualis B1).

RESUMO GERAL

Inovação esta aliada ao processo de transformação e criação de um novo produto, ideia ou serviço, de forma que o mesmo seja entregue a sociedade e legitimado pelo seu valor. Nesse contexto, o Programa de Doutorado Acadêmico em Inovação (DAI) refere-se a uma iniciativa do Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) para que os Programas de Pós-Graduação possam fomentar projetos de interação com empresas por meio de suas teses. Considerando o exposto acima, esta tese teve como foco a inovação em biotecnologia enzimática e está apresentada na forma de dois artigos científicos.

ARTIGO 1 - Obtenção de di e tripeptídeos bioativos a partir da hidrólise enzimática do farelo de soja e seu isolado protéico utilizando Alcalase® e Neutrase®

INTRODUÇÃO. Peptídeos bioativos são cadeias curtas de aminoácidos unidas por ligações peptídicas. Possui especial interesse devido sua alta bioatividade e, principalmente, a suas propriedades funcionais. Portanto, trata-se de compostos que atendem as demandas do mercado moderno, o qual que está cada vez mais interessado na seleção de alimentos de maior qualidade e que possam estar aliados a promoção de saúde.

Peptídeos bioativos podem ser obtidos a partir de diferentes métodos, com destaque especial para os processos de hidrólises enzimáticas, que são vantajosos para o setor alimentício, especialmente por apresentar vantagens como maior controle do grau de quebra da proteína, baixo custo e por ser uma potente ferramenta de liberação de peptídeos biologicamente ativos. O maior número de peptídeos isolados é proveniente de fontes animais e vegetais e a proteína de soja tem se evidenciado uma fonte rica de peptídeos bioativos. Assim, o uso de subprodutos provenientes do processamento da soja também pode ser uma alternativa próspera para o desenvolvimento de alimentos ricos em propriedades bioativas tanto para consumo humano quanto animal.

OBJETIVOS. Considerando o interesse na obtenção de compostos bioativos com significativa bioatividade e propriedade funcionais, o presente trabalho objetivou aplicar proteases comerciais para obtenção de di e tripeptídeos bioativos provenientes de subprodutos da soja e, por consequência, agregar maior valor aos mesmos.

MATERIAL E MÉTODOS. O farelo de soja desengordurado (SM) foi fornecido pela empresa BRF S.A. Foi realizada a análise de composição centesimal do SM. Foi preparado o isolado de proteína de soja (SPI), o qual foi obtido por extração aquosa a partir do SM. As hidrólises enzimáticas do SM e do SPI foram realizadas isoladamente com as enzimas comerciais Alcalase[®] (pH 8 a 55 °C) (SMA e SPIA) e Neutrase[®] (pH 7 a 50 °C) (SMN e SPIN) com 10 mg para 1% substrato (m/m) por 4 h. O rendimento dos hidrolisados (%) foi calculado pela razão da massa do hidrolisado obtida e a massa inicial do SM (g) e SPI (g).

Foi determinado o teor de proteína bruta pelo método de Kjeldahl e foi mensurado o grau de hidrólise das reações utilizando reagente OPA a 340 nm. Foi realizado eletroforese de proteína em gel de poliacrilamida desnaturante (SDS-PAGE) e determinado a atividade antioxidante dos hidrolisados pelos métodos de atividade sequestrante de radicas DPPH e ABTS.

A identificação de peptídeos bioativos foi realizada pela técnica de rápida absorção por LC-MS/MS utilizando um sistema inovador, que consiste no rastreamento rápido de moléculas protonadas de di e tripeptídeos, baseado na perda neutra (NL) de 46 Da, sem necessidade de pré-tratamento ou separação cromatográfica demorada.

RESULTADOS E DISCUSSÃO. A análise da composição centesimal realizada no MS revelou um teor de proteína total bastante elevado (49,31 ± 0,06%), o que indica que o subproduto é uma fonte promissora de peptídeos bioativos. Os valores dos rendimentos obtidos na preparação do SPI e nas hidrólises foram: SPI 22,99 ± 0,23%; SMA 16,80 ± 0,10%; SMN 16,40 ± 0,30%; SPIA 22,10 ± 1,00% e SPIN 22,94 ± 0,23%, destacando-se maior eficiência nos hidrolisados SPI do que nos hidrolisados SM.

Os resultados do teor de proteína bruta determinados para SPI e hidrolisados foram: $102,6 \pm 3,62\%$ para SPI; $71,8 \pm 1,43\%$ para o hidrolisado de SMA; $74,5 \pm 1,04\%$ para SMN; 98,8 \pm 0,33% para SPIA e 99,7 \pm 0,34% para SPIN. Tais resultados se mostraram satisfatórios, pois um produto comercial de isolado de proteína de soja deve conter no mínimo 90% de proteína. Para a hidrólise realizada no SM, foi observado um teor de proteína bruta acima de 70%, o que sugere que a hidrólise também foi eficaz neste caso. Os resultados obtidos na análise de grau de hidrólise revelaram uso da enzima Alcalase® apresentou melhores resultados ($16,72 \pm 0,25\%$ e $12,59 \pm 0,80\%$ para SMA e SPIA, respectivamente) em comparação com a enzima Neutrase $(8,45 \pm 0,62\%)$ para SMN e 1,29 \pm 0,28% para SPIN), o que indica que a enzima com alta atividade proteolítica pode ter influenciado o comprimento da cadeia peptídica e aumentado a quantidade de aminoácidos livres. O SDS-PAGE revelou que ambos os tratamentos enzimáticos resultaram em peptídeos com massas menores que 25 KDa. A atividade sequestrante de radicas DPPH e ABTS revelaram que a hidrólise realizada com Alcalase® e Neutrase® melhorou a atividade antioxidante de SM e SPI, mas o SPI se destacou por apresentar maior atividade antioxidante (406, $33 \pm 0.22 \mu$ mol de TE/mg de amostra) do que SM e seus hidrolisados.

A análise de LC-MS/MS exibiu que a aplicação do processo de hidrólise com a protease comercial Alcalase® no SM promoveu a obtenção de 19 peptídeos (16 di e 03 e tripeptídeos). O hidrolisado SPIA gerou 27 dipeptídeos e 24 tripeptídeos. O emprego das proteases comerciais gerou peptídeos com bioatividades que corresponderam principalmente à atividade inibitória da ECA, à atividade inibitória da dipeptidil peptidase IV (DPP-IV), atividade antioxidante, ação estimulante e atividade inibitória da renina.

CONCLUSÕES. O processo de hidrólise da proteína de soja com Alcalase® proporcionou a obtenção de proteínas com cadeias mais curtas, características de peptídeos com propriedades bioativas. A hidrólise de SM e SPI potencializou significativamente a capacidade antioxidante da proteína de soja, principalmente com o uso de Alcalase®. O sistema inovador utilizado para a identificação de di e tripeptídeos por LC-MS/MS foi eficiente para o estudo de subprodutos da soja e identificou um número significativo de di e tripeptídeos, que apresentaram seqüências de bioatividades antioxidantes, anti-hipertensivas e antidiabéticas. Assim, a aplicação de processos biotecnológicos realizados com enzimas comerciais pode ser uma alternativa promissora para melhorar as características tecnológicas e funcionais do subproduto do farelo de soja.

Palavras-chave: Farelo de soja, hidrólise enzimática, di-peptidos, tri-peptidos, bioatividades.

ARTIGO 2 - Desafios e alternativas para a produção de ciclodextrinas a partir da enzima CGTase de *Bacillus subtilis* WB800 recombinante.

INTRODUÇÃO. As ciclodextrinas (CDs) são oligossacarídeos cíclicos obtidas a partir da reação de transglicosilação do amido, a qual é catalisada pela enzima ciclomaltodextrina glucanotransferse (CGTase). Devido a característica apolar da cavidade as CDs possuem a capacidade de encapsular inúmeras moléculas. Embora apresente alta aplicabilidade o custo de produção das CDs é alto, e seu rendimento é baixo. Nesse contexto, é significativamente relevante avaliar novas alternativas biotecnológicas de otimização da produção de CDs.

OBJETIVOS. Avaliar estratégias de produção de CDs a partir da CGTase do *B. subtillis* WB800 recombinante utilizando sistema contínuo de produção associado a ultrafiltração para enzima semipurificada e purificada, e meios de produção alternativos para a enzima bruta.

MATERIAL E MÉTODOS. Para a produção da *B. subtilis* CGTase recombinante, foi utilizado o meio 2xYT, suplementado com canamicina ($25 \mu g/mL$) e incubado a 30 °C, a 100 rpm, por 5 dias. Os meios alternativos utilizados foram: meio para produção de moléculas de CDs apenas com adição da enzima (meio 1A) e apenas com a presença do microrganismo (meio 1B), e o meio 2xYT apenas com adição da enzima (meio 2A) e somente com a presença do microrganismo (meio 2B). Os meios foram suplementados com canamicina e adicionados de amido de milho e, posteriormente, incubados a 30 °C e 50 °C, 100 rpm, por 5 dias. Alíquotas de 5 mL foram coletadas a cada 24 horas para análise cromatográfica.

RESULTADOS E DISCUSSÃO. A enzima de CGTase de *B. subtilis* WB800 recombinante exibiu baixa atividade enzimática (1,60 µmol de β -CD/min/mL), possivelmente devido interferência na sua estabilidade estrutural durante o armazenamento. A 30 °C, o tempo de 48 h foi o que apresentou maior produção de CDs, principalmente β -CD, com destaque para o meio 2xYT, independente da presença do microrganismo ou apenas da enzima (13,26 e 15,06 mmol/L de β -CD, respectivamente). Contudo, foi a 50 °C que a produção de CDs foi mais competente, sendo a produção de β -CD a mais eficiente (média de 15 mmol/L). Em todos os ensaios foi possível observar que a concentração de β -CD começou a diminuir progressivamente, principalmente no meio contendo o microrganismo (meio 1A). Esse evento pode estar relacionado ao fato de o microrganismo estar produzindo outras enzimas que atuam na degradação da CGTase recombinante ou, ainda, devido à possibilidade do microrganismo consumir as CDs ao longo do tempo.

CONCLUSÕES. Meios alternativos acrescidos de amido de milho mostraram-se uma estratégia interessante para a produção de β -CD, que atualmente é a CD mais utilizada e disponível comercialmente. Além disso, a utilização da enzima sem purificação é uma alternativa promissora, pois contribui para a redução de custos e etapas na produção de CDs, podendo favorecer sua aplicação industrial.

Palavras-chave: Ciclodextrinas, CGTase recombinante, Sistema Contínuo, Ultrafiltração.

GENERAL ABSTRACT

Innovation is allied to the process of transformation and creation of a new product, idea or service, so that it is delivered to society and legitimized by its value. In this context, the Academic Doctorate Program in Innovation (DAI) refers to an initiative of the National Council for Scientific and Technological Development (CNPq) so that Graduate Programs can promote interaction projects with companies through their theses. Considering the above, this thesis focused on innovation in enzyme biotechnology and is presented in the form of two scientific articles.

ARTICLE 1 - Obtaining bioactive di and tripeptides from the enzymatic hydrolysis of soybean meal and its protein isolate using Alcalase® and Neutrase®

INTRODUCTION. Bioactive peptides are short chains of amino acids joined by peptide bonds. It is of special interest due to its high bioactivity and, mainly, its functional properties. Therefore, these are compounds that meet the demands of the modern market, which is increasingly interested in the selection of higher quality foods that may be allied to health promotion.

Bioactive peptides can be obtained from different methods, with special emphasis on enzymatic hydrolysis processes, which are advantageous for the food sector, especially because they have advantages such as greater control of the degree of protein breakdown, low cost and because it is a potent biologically active peptide release tool. The largest number of isolated peptides comes from animal and vegetable sources and soy protein has proven to be a rich source of bioactive peptides. Thus, the use of byproducts from soybean processing can also be a prosperous alternative for the development of foods rich in bioactive properties for both human and animal consumption.

AIMS. Considering the interest in obtaining bioactive compounds with significant bioactivity and functional properties, this work aimed to apply commercial proteases to obtain bioactive di and tripeptides from soy by-products and, consequently, add greater value to them.

MATERIAL AND METHODS. The defatted soybean meal (SM) was provided by the company BRF S.A. SM centesimal composition analysis was performed. Soy protein isolate (SPI) was prepared, which was obtained by aqueous extraction from SM. The enzymatic hydrolysis of SM and SPI were performed separately with the commercial enzymes Alcalase® (pH 8 at 55 °C) (SMA and SPIA) and Neutrase® (pH 7 at 50 °C) (SMN and SPIN) with 10 mg for 1% substrate (w/w) for 4 h. The hydrolyzate yield (%) was calculated by the ratio of the hydrolyzate mass obtained and the initial mass of SM (g) and SPI (g).

The crude protein content was determined by the Kjeldahl method and the degree of hydrolysis of the reactions was measured using OPA reagent at 340 nm. Protein electrophoresis was performed on a denaturing polyacrylamide gel (SDS-PAGE) and the antioxidant activity of the hydrolysates was determined by the DPPH and ABTS radical scavenger activity methods.

The identification of bioactive peptides was carried out by the rapid absorption technique by LC-MS/MS using an innovative system, which consists of the rapid tracking of protonated molecules of di and tripeptides, based on the neutral loss (NL) of

46 Da, without the need for time-consuming pretreatment or chromatographic separation.

RESULTS AND DISCUSSION. Analysis of the centesimal composition performed on MS revealed a very high total protein content (49.31 \pm 0.06%), which indicates that the by-product is a promising source of bioactive peptides. The yield values obtained in the preparation of the SPI and in the hydrolysis were: SPI 22.99 \pm 0.23%; SMA 16.80 \pm 0.10%; NMS 16.40 \pm 0.30%; SPIA 22.10 \pm 1.00% and SPIN 22.94 \pm 0.23%, highlighting greater efficiency in SPI hydrolysates than in SM hydrolysates.

The results of crude protein content determined for SPI and hydrolysates were: $102.6 \pm 3.62\%$ for SPI; $71.8 \pm 1.43\%$ for SMA hydrolyzate; $74.5 \pm 1.04\%$ for NMS; $98.8 \pm 0.33\%$ for SPIA and $99.7 \pm 0.34\%$ for SPIN. Such results were satisfactory, as a commercial product of soy protein isolate must contain at least 90% protein. For the hydrolysis performed in the SM, a crude protein content above 70% was observed, which suggests that the hydrolysis was also effective in this case. The results obtained in the analysis of the degree of hydrolysis revealed that the use of the enzyme Alcalase® presented better results (16.72 \pm 0.25% and 12.59 \pm 0.80% for SMA and SPIA, respectively) in comparison with the enzyme Neutrase $(8.45 \pm 0.62\%)$ for SMN and $1.29 \pm 0.28\%$ for SPIN), which indicates that the enzyme with high proteolytic activity may have influenced the length of the peptide chain and increased the amount of free amino acids. SDS-PAGE revealed that both enzymatic treatments resulted in peptides with masses less than 25 kDa. The scavenging activity of DPPH and ABTS radicals revealed that hydrolysis performed with Alcalase® and Neutrase® improved the antioxidant activity of SM and SPI, but SPI stood out for presenting greater antioxidant activity (406, $33 \pm 0.22 \mu$ mol TE/mg of sample) than SM and its hydrolysates.

The LC-MS/MS analysis showed that the application of the hydrolysis process with the commercial protease Alcalase® in the SM promoted the obtaining of 19 peptides (16 di and 03 and tripeptides). SPIA hydrolyzate generated 27 dipeptides and 24 tripeptides. The use of commercial proteases generated peptides with bioactivities that corresponded mainly to ACE inhibitory activity, dipeptidyl peptidase IV (DPP-IV) inhibitory activity, antioxidant activity, stimulating action and renin inhibitory activity.

CONCLUSIONS. The hydrolysis process of soy protein with Alcalase® provided proteins with shorter chains, characteristics of peptides with bioactive properties. The hydrolysis of SM and SPI significantly potentiated the antioxidant capacity of soy protein, mainly with the use of Alcalase®. The innovative system used for the identification of di and tripeptides by LC-MS/MS was efficient for the study of soybean by-products and identified a significant number of di and tripeptides, which presented sequences of antioxidant, antihypertensive and antidiabetic bioactivities. Thus, the application of biotechnological processes carried out with commercial enzymes can be a promising alternative to improve the technological and functional characteristics of the soybean meal by-product.

Keywords: Soybean meal, enzymatic hydrolysis, dipeptides, tripeptides, bioactivities.

ARTICLE 2 - Challenges and alternatives for the production of cyclodextrins from the recombinant *Bacillus subtilis* WB800 CGTase enzyme.

INTRODUCTION. Cyclodextrins (CDs) are cyclic oligosaccharides obtained from the starch transglycosylation reaction, which is catalyzed by the enzyme cyclomaltodextrin glucanotransferse (CGTase). Due to the non-polar characteristic of the cavity, CDs have the capacity to encapsulate countless molecules. Although it has high applicability, the production cost of CDs is high, and its yield is low. In this context, it is significantly relevant to evaluate new biotechnological alternatives for optimizing CD production.

AIMS. Evaluate CD production strategies from recombinant *B. subtillis* WB800 CGTase using a continuous production system associated with ultrafiltration for semipurified and purified enzyme, and alternative production means for the crude enzyme.

MATERIAL AND METHODS. For the production of recombinant *B. subtilis* CGTase, 2xYT medium was used, supplemented with kanamycin (25 μ g/mL) and incubated at 30 °C, at 100 rpm, for 5 days. The alternative medium used were: medium for the production of CD molecules with only the addition of the enzyme (medium 1A) and only with the presence of the microorganism (medium 1B), and the 2xYT medium with only the addition of the enzyme (medium 2A) and only with the presence of the microorganism (medium 2B). The media were supplemented with kanamycin and corn starch and subsequently incubated at 30 °C and 50 °C, 100 rpm, for 5 days. Aliquots of 5 mL were collected every 24 hours for chromatographic analysis.

RESULTS AND DISCUSSION. The recombinant *B. subtilis* WB800 CGTase enzyme exhibited low enzymatic activity (1.60 μ mol β -CD/min/mL), possibly due to interference in its structural stability during storage. At 30 °C, the time of 48 h showed the highest production of CDs, mainly β -CD, with emphasis on the 2xYT medium, regardless of the presence of the microorganism or just the enzyme (13.26 and 15.06 mmol/ L of β -CD, respectively). However, it was at 50 °C that the production of CDs was more competent, with the production of β -CD being the most efficient (average of 15 mmol/L). In all assays, it was possible to observe that the concentration of β -CD began to progressively decrease, mainly in the medium containing the microorganism (medium 1A). This event may be related to the fact that the microorganism is producing other enzymes that act in the degradation of the recombinant CGTase or, even, due to the possibility of the microorganism consuming the CDs over time.

CONCLUSIONS. Alternative medium added with corn starch proved to be an interesting strategy for the production of β -CD, which is currently the most widely used and commercially available CD. In addition, the use of the enzyme without purification is a promising alternative, as it contributes to the reduction of costs and steps in the production of CDs, which may favor its industrial application.

Keywords: Cyclodextrins, CGTase recombinant, Continuous System, Ultrafiltration.

1	ARTICLE 1
2	
3	Obtaining of bioactive di and tripeptides from enzymatic hydrolysis of Soybean
4	meal and its protein isolate using Alcalase® and Neutrase®
5	
6	Running title: Obtaining di-tripeptides from sovbean meal
7	
, 8	Thamara Thaiane da Silva Crozatti ^a Juliana Harumi Miyoshi ^a , Angélica Priscila
0	
9	Parussolo Tonin", Larissa Fonseca Tomazini", Marco Aurelio Schuler Oliveira", Jose
10	Uebi Maluf ^b , Eduardo Cesar Meurer ^c e Graciette Matioli ^{a*}
11	
12	^a State University of Maringá (UEM), Av. Colombo, 5790 - 87020-900, Maringá, PR, Brazil
13	^b BRFoods, Av. Senador Atílio Fontana, 4040, 85902-160, Toledo-PR, Brazil
14	^c Federal University of Paraná (UFPR), Advanced Campus Jandaia do Sul, 86900-000, Jandaia
15	do Sul-PR, Brazil
16	
17	* Corresponding author: Graciette Matioli
18	E-mail address: gmatioli@uem.br
19	Orcid: https://orcid.org/0000-0002-2531-2567
20	Tel.: +55 44 3011-3868;
21	Fax: +55 44 3011-4119
22	

24 The obtaining of bioactive di and tripeptides using Alcalase® and Neutrase® enzymes in the hydrolysis of soybean meal (SM) and its protein isolate (SPI) was evaluated. An 25 innovative system by fast LC-MS/MS neutral loss screening and de novo sequencing 26 was used to identify bioactive peptides. Soy protein characterization, gel 27 electrophoresis, and antioxidant activity of the obtained peptides were performed. 28 29 Results achieved showed that the use of Alcalase® and SPI preparation potentiated the peptide breaking bonds and favored the obtainment of bioactive peptides. The 30 antioxidant activity of tested samples was significantly improved with enzymatic 31 32 hydrolysis. LC-MS/MS analyses identified 19 peptides in SM and 51 in SPI, all obtained after hydrolysis with Alcalase® and, according to BIOPEP, with relevant 33 bioactivities and expressive functional potential. Therefore, it is suggested that bioactive 34 35 peptides achieved in this study can enable the development of new ingredients and provide greater added value to soy by-products. 36

37

38 Keywords: Soybean meal, enzymatic hydrolysis, dipeptides, tripeptides, bioactivities.

40 Graphical Abstract

43 **1. INTRODUCTION**

The demand for higher nutritional and sensory quality food products has increased significantly and, based on this scenario, the valuation of the food with functional ingredients also increases, among which bioactive peptides stand out.

Bioactive peptides are short-chain amino acid fragments joined by peptide
bonds, which can vary between two and twenty amino acid segments (Hartmann &
Meisel, 2007; Li-Chain, 2015). Nowadays, more than 4372 bioactive peptides already
identified are available in the literature, which may come from sources such as plants,
and animals, among others (Minkiewicz, Iwaniak & Darewicz, 2019).

The heightened interest in peptides is associated with their high bioactivity and, above all, their functional properties and health promotion (Coscueta et al., 2016; Liu et al., 2020). Such organic compounds can be obtained by different chemical processes, such as hydrolysis processes, fermentation methods, among others, which consist of breaking the protein into smaller pieces to modify the protein structures and improve its functional characteristics (Shen et al., 2020).

Enzymatic hydrolysis processes are highly beneficial to the food industry, especially because it has advantages, such as greater control of protein breakdown degree, low cost, among others (Sight et al., 2014). In this context, the use of different proteases is highlighted, which are classified into endopeptidases and exopeptidases, such as Alcalase®, Neutrase®, papain, trypsin, etc. (Liu et al., 2020; Tascias-Pascacio et al., 2020).

The largest number of isolated peptides comes from animal sources such as milk protein and dairy products (Hartmann and Meisel, 2007; Sigh et al., 2014). However, some vegetable sources have been expanding and showing up in recent years, such as soy protein, that in addition to exhibits one of the most important production

chains in the world agribusiness, standing out mainly in soybeans, bran, and oil
production, presents, together with its by-products, a rich source of bioactive peptides
(Gorçuc et al., 2020; Coscueta et al., 2019).

Different analytical methods are used to evaluate hydrolyzed proteins containing three or more amino acid residues. However, the techniques commonly used to investigate the smallest peptides (di- or tri-) have the disadvantage of timeconsuming sample preparation and the need for chromatographic fractionation. Liquid chromatography (LC) coupled with tandem mass spectrometry (MS/MS) has been frequently selected for the identification of biopeptides in complex mixtures (Poliseli et al., 2021).

To the best of authors' knowledge, there is no previously published work presenting the process of enzymatic hydrolysis that can be used to obtain di and tripeptides directly from soybean meal without the previous need to obtain its protein isolate. Nor is the author's knowledge of published works that describe an LC-MS/MS system for rapid screening of protonated di and tripeptide molecules from soybean meal and its protein isolate based on the neutral loss (NL) of 46 Da, without the need for time-consuming pretreatment or chromatographic separation.

Thus, this work aimed to evaluate the use of commercial enzymes to obtain di and tripeptides directly from soybean meal and, in addition, to identify tri- and dipeptides in soybean meal and its protein isolate by fast LC-MS/MS neutral loss screening and *de novo* sequencing.

89

- 90 2. MATERIALS AND METHODS
- 91

92 **2.1. Materials**

The defatted soybean meal was supplied by the BRFoods Company (Brazil). 93 Alcalase® 2.5 L and Neutrase® 0.8 L were purchased from Novozymes Latin America 94 Ltda. 6-Hydroxy-2,5,7,8-tetramethylchroman-2-carboxylic acid (Trolox), 2,2'-azinobis 95 (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-picrylhydrazyl 96 (DPPH), and HPLC-grade Acetonitrile were purchased from Sigma-Aldrich Brazil 97 Ltda. Deionized water was obtained using a Milli-Q system (Millipore, Billerica, MA). 98 99 All other reagents used were of degree of analytical purity.

100

101

2.2. Analysis of the centesimal composition of soybean meal (SM)

Proximate composition analysis of soybean meal (SM) was performed at the Food Analysis Laboratory of the State University of Londrina (Londrina - PR) according to the methods proposed by the AOAC (2016). Carbohydrates, lipids, proteins, ash, and moisture analyzes were performed.

106

107 **2.3. Preparation of Soy Protein Isolate (SPI)**

Soy protein isolate (SPI) was obtained by aqueous extraction from defatted 108 109 soybean meal (SM), as proposed by Coscueta et al. (2016), with modifications. A 110 solution containing soybean meal and distilled water in a 1:10 ratio, respectively, with 111 an initial pH equal to 8.5 was added to a jacketed glass reactor. The solution was heated to 70 °C for 60 min. After heat treatment, the extract was centrifuged at 2379 xg for 45 112 113 min and the protein was precipitated by acidification with HCl (1 N) until reaching pH 114 4.5. The insoluble portion was centrifuged at 2379 xg for 30 min and the precipitate was 115 lyophilized at -50°C for approximately 36-48 h and stored at -4 °C until use. The SPI yield obtained (%) was calculated by the ratio of the initial mass of the SM (g) and the 116 final mass of the SPI (g). 117

118

119 2.4. Enzymatic hydrolysis of SM and SPI

The enzymatic hydrolysis of SM and SPI were carried out as proposed by Shen et al. (2020), with modifications (Figure S1). Initially, a complete hydration process was applied in the SM and SPI, in which 4% of the sample (m/m) was suspended in distilled water and kept under stirring at room temperature for 2 h. Afterward, the samples were stored at 4 °C for 12 h, followed by the hydrolysis process.

125 The hydrolysis was carried out in a jacketed glass reactor using two commercial enzymes separately: Alcalase® (pH 8 at 55 °C) and Neutrase® (pH 7 at 50 °C). The 126 127 amount of applied enzyme in each assay was 10 mg for 1% substrate (w/w) and the 128 reaction time was 4 h. The enzymes were inactivated by heat treatment at 100 °C for 10 min, and the supernatant was separated by centrifugation at 2379 xg for 45 min at 20 129 130 °C. The hydrolysates obtained were lyophilized and stored at -10 °C. The yield of hydrolysates (%) was calculated by the hydrolyzate mass ratio obtained and the initial 131 mass of SM (g) and SPI (g). 132

133

134 **2.5. Determination of crude protein**

135 Crude protein content was determined by Kjeldahl method according to AOAC
136 (2016), using a nitrogen analyzer (Luca Model -74, São Paulo, BR) and a conversion
137 factor of nitrogen to protein equal to 6.25.

138

139 **2.6. Determinations of degree of hydrolysis**

The degree of hydrolysis (DH) of SM and SPI were determined as described by
Nielsen, Petersen, and Dambmann (2001), with modifications. Each tube containing
400 µl of the standard, blank (distilled water) and sample was added with 3.0 mL of

144

OPA reagent and reacting solutions for 2 min. Absorbance was then read at 340 nm. 143 The %DH was calculated following the equations reported by Adler-Nissen (1984).

145

2.7. Gel electrophoresis (SDS-PAGE) 146

147 Protein electrophoresis in denaturing polyacrylamide gel (SDS-PAGE) were performed on all hydrolysates, according to the protocol described by Laemmli (1970). 148 The concentration of separating gel was 12% (m/v) and of the stacking gel was 4%. 149 150 Electrophoresis were performed in a vertical system following the manufacturer's 151 instructions (Bio-Rad). Samples were mixed with sample buffer (2% SDS, 10% glycerol, 0.01% bromophenol blue, 0.0625M Tris-HCl pH 6.8, 5% β-mercaptoethanol) 152 153 and boiled before the application. The running voltage ranged from 100 to 200 V using 154 Laemmli buffer (3 g/L Tris-base, 14 g/L Glycine, and 1 g/L SDS). After 155 electrophoresis, gel proteins were stained with Coomassie Blue R-250 dye and decolourised in a solution with 50% (v/v) methanol and 10% (v/v) acetic acid. 156

157

2.8. Antioxidant activity 158

159 The antioxidant activity of protein hydrolysates was evaluated by root 160 scavenging activity DPPH and ABTS methods. The DPPH analysis was performed as 161 described by Li, Du and Ma (2011), with modifications. A stock solution of DPPH 162 6,25,10-5 mol/L in methanol was prepared and, later, a working solution was prepared using water as a diluent, in which the absorbance of this solution at 517 nm was 0.700 \pm 163 0, 02. A 25 µL sample was used at a concentration of 1 mg/mL and 2000 µL of the 164 165 working solution, the pH of the sample was adjusted as appropriate to obtain complete 166 dissolution of the sample. After standing for 30 minutes in the dark, readings were taken at 517 nm. The DPPH radical scavenging activity was performed in triplicate and then 167

168 compared to a standard curve made from the Trolox readings (200-2000 µmol L⁻¹).
169 Results were expressed as µmol of Trolox protein equivalent (TE) per mg of sample.

170 The ABTS radical scavenging activity was performed as proposed by Rufino et al. (2007), with modifications. A 7 mmol/L ABTS solution and a 140 mmol/L 171 potassium persulfate solution were prepared. Subsequently, the solution was prepared 172 using 5 mL of ABTS stock solution with 88 µL of potassium persulfate solution and 173 174 incubated for 16 h in the dark at room temperature. The resulting ABTS solution was diluted with water to an absorbance of 0.70 ± 0.02 at 734 nm. 30 µL of the sample were 175 used (and it was diluted when necessary and the pH adjusted if it was necessary to 176 177 obtain a complete dissolution of the sample) and 3 mL of the ABTS solution, which 178 were left in the dark for 6 min. ABTS radical scavenging activity was determined in triplicate and then compared to a standard curve made from Trolox readings (200-2000 179 180 µmol L⁻¹). Results were expressed as µmol of Trolox protein equivalent (TE) in mg of sample. 181

182

183 2.9. Sequential Mass Spectrometry (LC-MS/MS)

The bioactive peptides of the hydrolysates were analyzed as described by 184 185 Poliseli et al. (2021), using a Quattro Premier XE triple-quadrupole mass spectrometer 186 (Waters Corporation, Milford, MA, The USA) equipped with an electrospray ionization source, a Waters 515 pump and an XBridge (Waters) C18 3.5 µm (4.6 x 50 mm) 187 188 column. For sample preparation, 0.1 g of hydrolyzed was dissolved in 1 mL of 50 mM ammonium bicarbonate solution. The solution was mixed in vortex for 1 min and then 189 190 the first dilution was carried out where 100 μ L of this solution was mixed with 900 μ L of mobile phase acetonitrile: water: formic acid (70:30:0.1) (v/v/v) and was centrifuged 191 at 3 xg for 10 min. The sample remained refrigerated at 4 °C for 60 min. Then, the 192

193 second dilution was performed, in which $100 \ \mu L$ of the solution was mixed with $900 \ \mu L$ 194 of mobile phase, followed by vortexing for 1 min. The diluted sample was injected into 195 the reodyne valve of the LC-MS/MS system, the injection volume was 5 μL and the 196 analysis run time was 1 minute for each sample.

197 The LC-MS/MS (full scan and fragmentation) experiments were conducted using a conventional electrospray ionization source (ESI). The desolvation and source 198 199 gas temperatures were 350 °C and 110 °C, respectively. The electrospray source was operated in positive ionization mode (ESI +) at 4.0 kV. The cone voltage, collision 200 energy, and collision gas pressure (argon) were 20 V, 15 V, and 3.0×10^{-3} Torr, 201 202 respectively. The spectra obtained were interpreted as described by Cantú et al. (2008) 203 and the amino acid sequence of the peptide's functionality contained in the fragmentation spectra were evaluated using the BIOPEP-UWM database. 204

205

206 **2.10. Statistical analysis**

The results obtained were evaluated by analysis of variance (ANOVA) and Tukey post-test (p < 0.05) for comparison between samples, using Sisvar version 5.7 (Build 91). All assays were performed in triplicate and results were reported as mean \pm SD (standard deviation).

211

212 **3. RESULTS AND DISCUSSION**

213

214 3.1. Proximate composition of SM and protein yields in SPI and hydrolysates

The proximate composition analysis performed in the SM resulted in the following values: carbohydrates $35.71 \pm 0.02\%$; lipids $0.56 \pm 0.03\%$; proteins $49.31 \pm 0.06\%$; ash $6.16 \pm 0.04\%$ and humidity $8.26 \pm 0.05\%$. 218 Soybean meal represents a by-product of the oil extraction industry and stands 219 out for being an interesting resource for the extraction of proteins of great applicability 220 for the development of products aimed at human and animal food (Xing et al., 2018). In the present study, the total protein content observed was quite high (49.31%), which 221 indicates that it is a promising source of bioactive peptides. Similar results of proximate 222 composition were found by Orts et al. (2019), who studied the potential of soybean pulp 223 224 (Okara) for extracting bioactive compounds and observed a protein content close to 225 41%, and by Peng et al. (2020), who studied the functional potential of soy protein and found a total protein content for soy flour close to 37% and carbohydrate and ash 226 227 content equal to 34.5% and 6.7%, respectively.

The values of the yields obtained in the preparation of the SPI and in the hydrolysis carried out with the enzymes Alcalase® and Neutrase® were: SPI 22.99 \pm 0.23%; SMA 16.80 \pm 0.10%; SMN 16.40 \pm 0.30%; SPIA 22.10 \pm 1.00% and SPIN 22.94 \pm 0.23%. As expected, there was greater efficiency in the SPI hydrolyzates than in the SM hydrolysates, which may be related to the fact that the process of obtaining the SPI results in a purer material, without the presence of residues from the processing of crude soybeans.

Crude protein content results determined by Kjeldahl's methods for SPI and hydrolysates were: $102.6 \pm 3.62\%$ for SPI; $71.8 \pm 1.43\%$ for the SMA hydrolyzate; $74.5 \pm 1.04\%$ for SMN; $98.8 \pm 0.33\%$ for SPIA and $99.7 \pm 0.34\%$ for SPIN. Such results proved to be satisfactory, since a commercial soy protein isolate product must contain at least 90% protein (dry basis) (Huang et al., 2020).

For the enzymatic hydrolysis carried out directly in the SM, a crude protein content above 70% was observed, which suggests that the hydrolysis was also effective in this case, with the crude protein value of the SM obtained after hydrolysis being approximately 20% greater than the initial (49.31%).

244 Protein hydrolysis can be measured in terms of the degree of hydrolysis (DH).245 DH is associated with amino acid composition and may imply the biological activity of

the peptides formed (Shahi et al., 2020). In the present study, the use of Alcalase® 246 247 enzyme showed better DH results (16.72 \pm 0.25% and 12.59 \pm 0.80% for SMA and 248 SPIA, respectively) compared to Neutrase[®] enzyme ($8.45 \pm 0.62\%$ for SMN and $1.29 \pm$ 0.28% for SPIN), which suggests that the enzyme with high proteolytic activity may 249 250 have influenced the peptide chain length and increased the amount of free amino acids. 251 The DH in Alcalase® hydrolysates are similar to those presented by Chiang et al. 252 (2006) for pepsin and trypsin, as well as those presented by Coscueta et al. (2016) for Corollasse PP. Although the use of Neutrase® has shown low DH, the application of 253 hydrolysis directly in the SM can be an alternative for the food segment, as the acid 254 255 hydrolysis of 8% leads to the release of bitter peptides (Coscueta et al., 2016). New 256 studies must be carried out in order to improve the efficiency of the hydrolysis process with Alcalase® and Neutrase®. 257

258 **3.2. SDS-PAGE**

259 The figure 1A shows the gel electrophoresis results obtained for the proteins from each hydrolyzed material. For both SM and SPI, it was found that the hydrolysis 260 261 performed with the commercial enzyme Alcalase® presented more intense bands at the 262 end of the gel, which shows the presence of smaller protein fragments when compared 263 to the hydrolysis performed with the enzyme Neutrase®. Nevertheless, the SDS-PAGE 264 revealed that both enzymatic treatments resulted in peptides with masses smaller than 265 25 KDa, being that many peptides with a mass lower than 18 KDa, the smaller marker 266 used.

Figure 1: (A) Denaturing polyacrylamide gel (SDS-PAGE) obtained for samples hydrolyzed with the enzymes Alcalase® and Neutrase® in soybean meal (1 and 3, respectively) and protein isolate (2 and 4, respectively). (B): Antioxidant sequestration activities of ABTS (A) and DPPH (B), in soybean meal (SM), in protein isolate (SPI), and hydrolysates with the enzymes Alcalase® (SMA and SPIA) and Neutrase® (SMN and SPIN).

275

268

The path covered in the gel by the peptides obtained with the hydrolysis by Neutrase® showed well-distributed bands located in the region of higher molecular weight. The peptides obtained with the hydrolysis with Alcalase® flowed more easily in the gel and, therefore, the bands corresponded to the region of lower molecular weight. Similar to the present study, Ahmadifard et al. (2016) evaluated the behavior of commercial enzymes in soy protein and observed a greater hydrolysis potential of Alcalase® enzyme compared to other evaluated enzymes, such as papain. The authors also observed a greater number of bands in samples hydrolyzed for 30 min with
Alcalase®, however, after increasing the hydrolysis time, these denser bands
disappeared, highlighting only fragments of lower molecular weight. Coscueta et al.
(2016), who used the Colorase PP enzyme, also identified denser bands at the end of the
gel, characterizing a greater presence of small peptides.

288

- 289 **3.3. Antioxidant activity**
- 290

Figure 1B reveals the results obtained by analyzing ABTS and DPPH radical 291 292 scavenging in SM, SPI, and hydrolysates with commercial proteases from them. The 293 results obtained revealed that the hydrolysis performed with Alcalase® and Neutrase® improved the antioxidant activity of SM and SPI, but SPI stood out as it exhibited 294 295 greater antioxidant activity (406, $33 \pm 0.22 \mu$ mol of TE/mg of sample) than SM and its 296 hydrolysates SMA and SMN (329.66 \pm 0.19; 398.00 \pm 0.22 and 351, 33 \pm 0.20, 297 respectively). Regarding the application of enzymes, it is possible to suggest that the use of Alcalase® potentiated the antioxidant characteristics of the samples, with SPIA 298 299 showing a better result (569.66 \pm 0.02 µmol of TE/mg of the sample). Similar behavior 300 was evidenced for the DPPH radical, which also showed greater efficiency in the 301 scavenging of free radicals for the SPIA sample (98 \pm 0.01 µmol of TE/mg of the sample). These results suggest that Alcalase[®], being more efficient in breaking peptide 302 303 bonds, contributed to obtaining proteins with simple structure and lower molecular weight, which have greater antioxidant capacity. 304

305 Shen et al. (2020) evaluated the formation and characterization of soy protein 306 nanoparticles by enzymatic hydrolysis with the proteases Flavorzyme, Alcalase, and 307 Protamex and observed a more pronounced antioxidant effect in the hydrolyzate with Alcalase, which according to the authors, can be attributed to the progressive generation of polypeptides. Thus, the formation of peptides with significant antioxidant capacity, in addition to bringing health benefits, shows an interesting alternative for replacing artificial antioxidants in foods.

Finally, it is noteworthy that the application of the enzymatic hydrolysis 312 process contributed to the better scavenging of ABTS and DPPH radicals. In both, a 313 314 similar antioxidant behavior was observed, but the antioxidant activity in µmol of Trolox/mg of sample was significantly higher for the ABTS radical. The greater 315 scavenging capacity of the ABTS radical compared to the DPPH radical may be related 316 317 to the difference in the solubility of the radicals, since the DPPH radical has a certain 318 limitation to mimic the role of hydrophilic antioxidants, as it presents dissolution barriers in aqueous solution, on the contrary of the ABTS radical that offers affinity 319 320 with aqueous and organic solutions (Aloglu and Oner, 2011). Similar results were observed by Mukia et al. (2021) who evaluated the generation of antioxidant peptides 321 322 from SPI obtained by the action of Chryseobacterium sp.

323

324 **3.4. Mass spectrometry**

325 Liquid chromatography (LC) coupled with mass spectrometry (MS/MS) has proven to be a sensitive technique, commonly used for the determination of molecular 326 weight and sequence of proteins and peptides, and for the identification of biopeptides 327 328 in complex mixtures (Silveira et al., 2013). In the present study, the rapid LC-MS/MS method based on the neutral loss (NL) of 46 Da (CO and H₂O or formic acid) was 329 330 used, with the main objective of identifying di and tripeptides obtained from soy protein from enzymatic hydrolysis. The system used consists of rapid tracking (5 min) 331 of protonated di and tripeptide molecules, in which there is a selective neutral loss 332

(NL) of 46 Da, due to the carboxylic acid portion, and also comprises the search for
dissociation fragments collision-induced (CID) by *de novo* sequencing (Poseli et al.,
2021).

Previously, full scan analyzes were performed on all hydrolyzed samples 336 337 (SMA, SMN, SPIA, and SPIN). The spectra obtained in the hydrolysates with the Alcalase[®] enzyme showed better results, as they presented well-formed peaks in a 338 339 short run time. On the other hand, the hydrolysates with Neutrase® enzyme did not 340 present regular peaks, and, based on this interpretation, only the SMA and SPIA samples were selected for the fragmentation step. The results obtained are in agreement 341 342 with those described by Tascias-Pascacio et al. (2020), who points out that the enzyme 343 Alcalase is more efficient in releasing peptides.

344 Figure S2 (A and B) shows one of the full scan spectra obtained for the SMA 345 and SPIA samples, in which the possible combinations of di and tri-peptides with 346 sufficient intensity to fragment (absolute intensity close to 1000) were identified. The 347 identification using the m/z ions for the SMA was: 203, 205, 219, 223, 231, 233, 235, 237, 253, 263, 267, 279, 280, 281, 284, 303, 323, 331, 333, 345, 367, 372 and 387. 348 349 Identification using the m/z ions for the SPIA was: 203, 215, 217, 219, 223, 231, 233, 350 235, 237, 243, 246, 247, 253, 254, 263, 267, 269, 272, 279, 281, 292, 295, 297, 323, 351 325, 328, 231, 344, 352, 355, 269, 371, 372, 382, 385, 388. Therefore, it is suggested that the SPIA sample was hydrolyzed in a more potent way than the SMA, due to the 352 353 observation of a greater amount of m/z ions that characterize bioactive peptides for SPIA. 354

Subsequently, new complete Collision Induced Dissociation (CID) MS/MS were performed in triplicate by *de novo* sequencing and all fragmentation spectra of each selected ion were acquired, where the interpretation of the mass spectra was

carried out by identifying the ammonium ion, from y1 ions (protonated amino acids of 358 359 20 amino acid possibilities), from y2 ions (for tripeptides), from confirmatory amino acid residues, and b2 ions. Figure 2A shows one of the mass spectra obtained by the 360 361 fragmentation step for the ion of m/z 246 in the SPIA hydrolyzate. For this ion, four different y1 values were identified (I/L (132), Q/K (147), F (166), and R (175)), with 362 only the N(I/L) di-peptide sequences being confirmed), V(I/L) and AR. Figure 2B 363 364 shows one of the tripeptide identification spectra in the SPIA sample with an ion of m/z394, were y1 Threonine (T - 120), Leucine, and Isoleucine (I/L - 132), Phenylalanine 365 (F - 166), and Tyrosine (Y - 182). After the interpretations, the sequences of tri-366 367 peptides (I/L)CT, TC(I/L), D(F/M)(I/L), D(I/L)F, and DPY were confirmed.

369

Figure 2: (A) Mass spectrum obtained and interpreted in the fragmentation step for *de novo* sequencing for the m/z 246 ions of the SPIA protein. (*) represents the confirming amino acid ammonium ions. (B) Mass spectrum obtained and interpreted in the fragmentation step for *de novo* sequencing for the m/z 394 ions of the SPIA protein. (*) represents the confirming amino acid ammonium ions.

19

Tables 1 and 2 present the fragmentation spectra interpretations performed for all *de novo* sequencing spectra, the di and tri-peptide identification results obtained for the SMA and SPIA samples, as well as their biological activities that were determined based on in the BIOPEP-UWM database (Minkiewicz, Iwaniak & Darewicz, 2019).

Sample	(M + H) ⁺	y ¹	Ammonium Ion	b ²	y ²	Amino acid sequence	Biological activity*
	203	132 (I/L)	44 (A); 86 (I/L)	185	-	A(I/L)	ACE inhibitor.
	205	118 (V)	60 (S); 72 (V)	187	-	SV	Dipeptidyl peptidase IV inhibitor.
	219	120 (T)	72 (V); 74 (T)	201	-	VT	Dipeptidyl peptidase IV inhibitor.
	219	132 (I/L)	60 (S); 86 (I/L)	201	-	S(I/L)	Dipeptidyl peptidase IV inhibitor.
	231	132 (I/L)	72 (V); 86 (I/L)	213	-	V(I/L)	Dipeptidyl peptidase IV inhibitor; Stimulating.
	233	132 (I/L)	74 (T); 86 (I/L)	215	-	T(I/L)	Dipeptidyl peptidase IV inhibitor.
	237	166 (F)	44 (A); 120 (F)	219	-	AF	ACE inhibitor;
	253	156 (H)	70 (P); 110 (H)	235	-	РН	ACE inhibitor; Dipeptidyl peptidase IV inhibitor.
SMA	253	166 (F)	60 (S); 120 (F)	235	-	SF	Dipeptidyl peptidase IV inhibitor; Renin inhibitor.
	263	116 (P)	70 (P); 120 (F)	-	-	FP	ACE inhibitor; Dipeptidyl peptidase IV inhibitor.
	267	166 (F)	74 (T); 120 (F)	-	-	FT	Inibidor de renina.
	279	166 (F)	86 (I/L); 120 (F)	261	-	(I/L)F	ACE inhibitor.
	280	133 (N)	87 (N); 120 (F)	-	-	FN	Dipeptidyl peptidase IV inhibitor.
	281	166 (F)	120 (F)	263	-	DF	ACE inhibitor.
	281	182 (Y)	72 (V); 136 (Y)	-	-	YV	ACE inhibitor; Dipeptidyl peptidase IV inhibitor.
	284	156 (H)	110 (H)	266	-	(Q/K)H	Dipeptidyl peptidase IV inhibitor.
	331	132 (I/L)	44 (A); 86 (I/L); 101 (Q/K)	200	203	(Q/K)A(I/L)	Antioxidant.
	372	120 (T)	88 (D); 74 (T); 110 (H)	253	235	HDT	-
	372	147 (Q/K)	70 (P); 101 (Q/K)	266	275	P(Q/K)(Q/K)	-

Table 1: Amino acid sequences of peptides identified by LC-MS/MS in SM hydrolyzate with Alcalase ®.

From the obtained results, it was observed that the application of the hydrolysis 381 382 process with the commercial protease Alcalase® in the SM (Table 01) promoted the obtainment of 19 peptides (16 di and 03 and tri-peptides). The SPIA hydrolyzate 383 384 (Table 02) generated 27 di-peptides and 24 tri-peptides, which confirms the hypothesis that, although the application of the hydrolysis process directly to the soybean meal is 385 satisfactory, it was the SPI preparation that evidenced to be more efficient for obtaining 386 387 bioactive peptides. In general, the results reveal the obtainment of a very significant number of di and tri-peptides, which is very promising, since shorter-chain peptides are 388 characterized by exhibiting better biological activity and also by being absorbed with 389 390 more ease and efficiency than free amino acids (Agrawal et al., 2016).
Sample	$(M+H)^+$	\mathbf{y}^{1}	Ammonium Ion	b ²	y ²	Amino acid sequence	Biological activity *
	203	132 (I/L)	44 (A); 86 (I/L)	185	-	A(I/L)	ACE inhibitor.
	217	118 (V)	72 (V)	199	-	VV	Dipeptidyl peptidase IV inhibitor.
	223	166(F)	120 (E)	205		CE	ACE inhibitor;
	223	100 (1)	120(1)	205	-	OI ·	Dipeptidyl peptidase IV inhibitor.
	231	132 (I/L)	72 (V)· 86 (I/I)	213	_	$\mathbf{V}(\mathbf{I}/\mathbf{I})$	Dipeptidyl peptidase IV inhibitor;
	231	132 (I/L)	72(V), 00(1/L)	213	-	V (I/L)	Stimulating.
	233	120 (T)	74 (T); 86 (I/L)	-	-	(I/L)T	Dipeptidyl peptidase IV inhibitor.
	233	132 (I/L)	74 (T); 86 (I/L)	215	-	T(I/L)	Dipeptidyl peptidase IV inhibitor.
	235	120 (T)	74 (T); 102 (E)	-	-	ET	Dipeptidyl peptidase IV inhibitor.
	235	148 (E)	60 (S); 102 (3)	217	-	SE	Stimulating.
	237	166(F)	$44 (A) \cdot 102 (F)$	219	_	ΔF	ACE inhibitor;
	257	100(1)	++(11), 102(1)	21)	_	7 11	Dipeptidyl peptidase IV inhibitor.
	243	156 (H)	60 (S); 110 (H)	225	-	SH	Dipeptidyl peptidase IV inhibitor.
SPIA	246	132 (I/L)	87 (N); 86 (I/L)	-	-	N(I/L)	Dipeptidyl peptidase IV inhibitor.
	246	147 (O/K)	72 (V)· 101 (O/K)	228	_	V(O/K)	ACE inhibitor;
	210		/2 (V), 101 (Q/H)	220			Dipeptidyl peptidase IV inhibitor.
	246	175 (R)	44 (A); 110 (H)	228	-	AR	ACE inhibitor.
	253	156 (H)	70 (P): 110 (H)	235	_	РН	ACE inhibitor;
	235	150 (11)	/0 (I), 110 (II)	233		111	Dipeptidyl peptidase IV inhibitor.
							ACE inhibitor;
	253	166 (F)	60 (S); 120 (F)	235	-	SF	Dipeptidyl peptidase IV inhibitor;
							Renin inhibitor.
							ACE inhibitor;
	253	182 (Y)	44 (A); 136 (Y)	235	-	AY	Dipeptidyl peptidase IV inhibitor;
							Antioxidant.
	263	150 (M)	86 (I/L); 104 (M)	245	-	(I/L)M	Dipeptidyl peptidase IV inhibitor.
	267	120 (I)	74(T); 120 (F)	-	-	FT	Renin inhibitor.
							ACE inhibitor;
	267	166 (F)	74 (T); 120 (F)	249	-	TF	Dipeptidyl peptidase IV inhibitor;
							Renin inhibitor.

Table 2: Amino acid sequences of peptides identified by LC-MS/MS in SPI hydrolyzate with Alcalase ®.

	269	156 (H)	86 (I/L); 110 (H)	251	-	(I/L)H	ACE inhibitor.
	269	$182(\mathbf{V})$	60 (S): 136 (V)	251	_	SV	ACE inhibitor;
	209	162(1)	00 (3), 130 (1)	231	-	51	Dipeptidyl peptidase IV inhibitor.
	279	166 (F)	86 (I/L); 120 (F)	261	-	(I/L)F	ACE inhibitor.
	281	166 (F)	88 (D); 120 (F)	263	-	DF	ACE inhibitor.
							ACE inhibitor;
	281	182 (Y)	72 (V); 136 (Y)	247	-	VY	Dipeptidyl peptidase IV inhibitor;
							Antioxidant.
	292	205(W)	60 (S); 159 (W)	185	-	SW	Dipeptidyl peptidase IV inhibitor.
							CaMPDE inhibitor;
	295	166 (F)	102 (E); 120 (F)	277	-	EF	Renin inhibitor;
							Lipid-lowering.
	205	$182(\mathbf{V})$	86 (I/I) · 126 (V)	277			ACE inhibitor;
	293	162(1)	80 (I/L), 150 (1)	211	-		Antioxidant.
SPIA	328	120 (T)	44 (A); 74 (T); 110 (H)	209	257	AHT	-
	328	120 (T)	44 (A); 74 (T); 110 (H)	209	191	HAT	-
	328	156 (H)	44 (A); 74 (T); 110 (H)	173	207	ATH	-
	328	156 (H)	44 (A); 74 (T); 101 (H)	173	227	TAH	-
	331	147 (O/K)	86 (I/L); 44 (A);	185	218	$(I/I) \land (O/K)$	ACE inhibitor
	551	(\mathbf{Q},\mathbf{R})	101(Q/K)	105	210		Tel milotoi.
	344	132 (I/L)	70 (P); 88 (D); 86 (I/L)	213	229	DP(I/L)	-
	344	132 (I/L)	72 (V); 86 (I/L)	213	245	V(I/L)(I/L)	-
	344	132 (I/L)	72 (V); 86 (I/L)	213	231	(I/L)V(I/L)	ACE inhibitor.
	352	166 (F)	120 (F); 159 (W)	205	-	WF	Dipeptidyl peptidase IV inhibitor.
	352	120 (T)	72 (T)	233	221	MTT	-
	372	156 (H)	86 (I/L); 110 (H)	217	269	C(I/L)H	-
	372	156 (H)	86 (I/L); 110 (H)	217	259	(I/L)CH	-
	382	120 (T)	120 (F)	263	283	(F/M)DT	-
	382	166 (F)	60 (S); 102 (E); 120 (F)	217	253	ESF	-
	382	166 (F)	120 (F)	217	281	TDF	-
	385	120 (T)	110 (H)	266	257	H(Q/K)T	-
	388	147 (Q/K)	86 (I/L); 101 (Q/K)	242	260	(Q/K)(I/L)(Q/K)	-
	388	175 (R))	72 (V); 129 (R)	214	289	VNR	-

	388	175(R)	72 (V); 129 (R)	214	274	NVR	-
	394	120 (T)	86 (I/L)	275	223	(I/L)CT	-
	394	132 (I/L)	86 (I/L)	263	235	TC(I/L)	-
SPIA	394	132 (I/L)	86 (I/L); 88 (D); 120 (F/M)	263	279	D(F/M)(I/L)	-
	394	166 (F)	86 (I/L); 120 (F/M)	229	279	D(I/L)F	-
	394	182 (Y)	70 (P); 136 (V)	213	279	DPY	-

*Biological activity identified by the BIOPEP-UWM database (Minkiewicz, Iwaniak & Darewicz, 2019).

The use of commercial proteases is commonly related to the interest in obtaining antioxidant peptides (Mukia et al., 2021). However, from the identification of all peptide sequences obtained by the BIOPEP database, it was observed that the bioactivities presented by the peptides in this study corresponded mainly to the inhibitory activity of ACE, the inhibitory activity of dipeptidyl peptidase IV (DPP -IV), in addition to antioxidant activity, stimulating action and renin inhibitory activity (Table 2).

400 Other studies have also highlighted the effectiveness of soy peptides as ACE 401 and dipeptidyl peptidase IV inhibitors (Gu and Wu, 2013; Coscueta et al.; 2019; 402 Nongonierna et al., 2019). This property is very important for the production of high 403 added value foods, which are especially associated with health promotion since the 404 action of these peptides is directly related to the functionalities of antihypertensive and 405 antidiabetic activity.

According to Sight et al. (2014), ACE inhibitor peptides are responsible for 406 407 blocking the first step of the renin-angiotensin system and interrupting the negative 408 response effects of angiotensin II. Therefore, they are considered a useful therapy in the 409 treatment of hypertension, and the presence of di- and tripeptides can further enhance 410 their functionality, as the ACE active site is more suitable to accommodate short-chain peptides. The DPP-IV inhibiting enzyme, on the other hand, acts to increase insulin 411 412 secretion, which enables better glycemic regulation and, consequently, proves to be 413 efficient to act in the prevention and treatment of diabetes (Nongonierna et al., 2019).

Correlating the results of antioxidant activity achieved in this research with the bioactive peptides detected by LC-MS/MS, it is possible to suggest that the increase in free radical scavenging capacity may be related to the greater presence of di-peptides with antioxidant biological activity found at SPIA. In addition, the peptides formed with antioxidant action presented in their structure the amino acid tyrosine ((I/L)Y,
VY, and AY), which, according to other studies, contributes to improving the
antioxidant activity of the peptide (Sompinit et al., 2020).

421

422 **4. CONCLUSION**

The hydrolysis processe of soy protein with Alcalase® provided the obtainment of proteins with shorter chains, characteristics of peptides with enhanced bioactive properties. SM and SPI hydrolysis significantly potentiated the antioxidant capacity of soy protein, specially with the use of Alcalase®, and the SMA and SPIA samples were hydrolyzed in a way more efficient. Therefore, the hypothesis that it is possible to obtain bioactive peptides directly from SM was confirmed.

The innovative system used for the identification of di and tripeptides by LC-MS/MS was efficient for the study of soybean by-products and identified a very expressive number of di and tripeptides, which showed sequences of antioxidant, antihypertensive and antidiabetic bioactivities.

That way, the application of biotechnological processes carried out with commercial enzymes can be a promising alternative to improve technological and functional characteristics of soybean meal protein and, consequently, enable its use in the development of better quality products and greater added value.

437

438 **5. ACKNOWLEDGMENT**

439

The authors would like to thank the National Council for Science and
Technological Development (CNPq - Process <u>141162/2019-8</u>) for financial contribution
and Supporting Scientific and Technological Development of the State of Paraná.

444 6. DECLARATION OF INTERESTS

445 All authors declare no conflicts of interest.

446

447 7. ETHICAL APPROVAL

448 Ethical approval was not required for this research.

449

450 8. DATA AVAILABILITY STATEMENT

451 The data that support the findings of this study are available from the 452 corresponding author upon request.

453

454 **9. REFERENCES**

Adler-Nissen, J. (1984). Control of the proteolytic reaction and of the level of bitterness in protein hydrolysis processes. Journal of Chemical Technology &
Biotechnology, 34, 215-222.

458

Agrawal, H., Joshi, R., & Gupta, M. (2016). Isolation, purification and characterization
of antioxidative peptide of pearl millet (Pennisetum glaucum) protein hydrolysate. Food
Chemistry, 204, 365-372.

462

Ahmadifard, N., Murueta, J. H. C., Abedian-Kenari, A., Motamedzadegan, A., &
Jamali, H. (2016). Comparison of the effect of three commercial enzymes for
enzymatic hydrolysis of two substrates (rice bran protein concentrate and soy-been
protein) with SDS-PAGE. Journal of Food Science and Technology, 53, 1279-1284.

- Aloglu, H. S., & Oner, Z. (2011). Determination of the antioxidant activity of bioactive
- 469 peptide fractions obtained from yogurt. Journal of Dairy Science, 94, 5305-14.
- 470
- 471 AOAC International. (2016). Official Methods of Analysis, twentieth ed. Association of
 472 Official Analytical Chemists, Washington, DC.
- 473
- 474 Cantú, M., Carrilho, E. Wulff, N. A., & Palma, M. S. (2008). Peptide sequencing using
 475 pasta spectrometry: a practical guide. Química Nova, 31, 669-675.
- 476
- 477 Chiang, W-D., Tsou M-J., Tsai, Z-Y., & Tsai, T-C. (2006). Angiotensin I-converting
- 478 enzyme inhibitor derived from soy protein hydrolysate and produced by using
 479 membrane reactor. Food Chemistry, 98, 725–732.
- 480
- 481 Coscueta, E. R., Amorim, M. M., Voss, G. B., Nerli, B. B., Pico, G. A., & Pintado, M.
- 482 A. (2016). Bioactive properties of peptides obtained from Argentinian defatted soy flour
- 483 protein by Corolase PP hydrolysis. Food Chemistry, 198, 36-44.
- * The citation of this reference was important for the present study, because the authors discuss interesting elements about enzymatic hydrolysis and obtaining bioactive peptides.
 486
- 487 Coscueta, E. R., Campos, D. A., Osorio, H., Nerli, B. B., & Pintado, M. (2019).
- 488 Enzymatic soy protein hydrolysis: A tool for biofunctional food ingredients Production.
- 489 Food Chemistry, 100006, 1-7.
- 490
- 491 Gorguç, A., Gençda, E., & Yilmaz, F. M. (2020). Bioactive peptides derived from plant
- 492 origin by-products: Biological activities and techno-functional utilizations in food
- developments A review. Food Research International, 136, 109504.

496

- 497 Chemistry, 141 2682-2690.
- 498
- Hartmann, R., & Meisel, H. (2007). Food-derived peptides with biological activity:
 from research to food applications. Current Opinion in Biotechnology, 18, 163-169.
- 501
- Huang, L., Zhang, W., Yan, D. Ma, L., & Ma, H. (2020). Solubility and aggregation of
- soy protein isolate induced by different ionic liquids with the assistance of ultrasound.

504 International Journal of Biological Macromolecules, 164, 2277-2283.

- 505
- Laemmli, U. K. (1970). Cleavage of Structural Proteins during the Assembly of the
 Head of Bacteriophage T4. Nature, 227, 680-685.

508

- Li, P., Du, G., & Ma, F. (2011). Phenolics concentration and antioxidant capacity of
 different fruit tissues of astringent versus non-astringent persimmons. Scientia
 Horticulturae, 129, 710-714.
- 512

Li-Chain, E. CY. (2015). Bioactive peptides and protein hydrolysates: research trends
and challenges for application as nutraceuticals and functional food ingredients. Current
Opinion in Food Science, 1, 28-37.

517	Liu, L., Li, S., Zheng, J., Bu, T., He, G., & Wu, J. (2020). Safety considerations on food
518	protein-derived bioactive peptides. Trends in Food Science & Technology, 96, 199-207.
519	Food Hydrocolloids, 105, 105844.
520	
521	Minkiewicz, P., Iwaniak, A., Darewicz, M. (2019). BIOPEP-UWM Database of
522	Bioactive Peptides: Current Opportunities.

- 524 Mukhia, S., Kumar, A., & Kumar, R. (2021). Generation of antioxidant peptides from
- soy protein isolate through psychrotrophic Chryseobacterium sp. derived alkaline broad
- temperature active protease. LWT Food Science and Technology, 143, 111152.

527

Nielsen, P. M., Petersen, D., & Dambmann, C (2001). Improved Method for
Determining Food Protein Degree of Hydrolysis. JFS: Food Chemistry and Toxicology,
v. 66, p. 642-646.

531

- 532 Norgonierna, A. B., Cadamuroa, C., Gouica, A. L., Mudglic, P., Maqsoodc, S., &
- 533 FitzGeralda, R. J. (2019). Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of a

camel whey protein enriched hydrolysate preparation. Food Chemistry, 279, 70-79.

535

Orts, A., Revilla, E., Rodriguez-Morgado, B., Castaño, A., Tejada, M., Parrado, J., &
García-Quintanilla. (2019). Protease technology for obtaining a soy pulp extract
enriched in bioactive compounds: isoflavones and peptides. Heliyon 5, 01958.

539

30

- Peng, Y., Kersten, N., Kyriakopoulou, K., & Jan van de Goot, A. (2020). Functional
- 541 properties of mildly fractionated soy protein as influenced by the processing pH. Journal
- 542 of Food Engineering, 275, 109875.
- 543
- 544 Poseli, C. B., Toin, A. p. p., Martines, F. C., Nascimento, N. C., Junior, V, B., Maluf, J.,
- 545 Ribeiro, V. M. S., Rosa, F. A. D., SOUZA, G. H. M. F., & Meurer, E. C. (2021). Tri-
- and dipeptides identification in whey protein and porcine liver protein hydrolysates by
- 547 fast LC-MS/MS neutral loss screening and *de novo* sequencing. Journal of Mass
- 548 Spectrometry, 65, 4701.
- 549 * This reference was important for the development of the present study, because it describes the
 550 methodology for identifying peptides bioactive by rapid neutral loss screening by LC-MS/MS and de
 551 novo sequencing.
- 552
- 553 Rufino, M. S. M., Alves, R. E., Brito, E. S., Morais, S. M., SAMPAIO, C. G., Pérez-
- Jiménez, J., & Saura-Calixto, F. D. (2007). Scientific Methodology: Determination of
- Total Antioxidant Activity in Fruits by Capturing Free Radical ABTS +. Technical
 Release.
- 557

Shahi, Z., Sayyed-Alangi, S. A., & Najafian, L. (2020). Effects of enzyme type and
process time on hydrolysis degree, electrophoresis bands and antioxidant properties of
hydrolyzed proteins derived from defatted Bunium persicum Bioss. press cake. Heliyon,
6, 03365.

- 563 Shen, P., Zhou, F., Zhang, Y., Yuan, D., Zhao, Q., & Zhao, M., (2020). Formation and
- characterization of soy protein nanoparticles by controlled partial enzymatic hydrolysis,
- 565 Food Hydrocolloids, 105, 105844.

Sigh, B.P., Vij, S., & Hati, S. (2014) Review Functional significance of bioactive 570 571 peptides derived from soybean. Peptides, 54, 171-179. 572 * The citation of this reference was important for the present study, because the authors present important 573 contents about the functionalities of bioactive peptides. 574 575 Silveira, S. T., Martínez-Maqueda, D., Recio, I., & Hernández-Ledesma, B. (2013). Dipeptidyl peptidase-IV inhibitory peptides generated by tryptichydrolysis of a whey 576 577 protein concentrate rich in β -lactoglobulin. Food Chemistry, 141, 072-1,077. 578 Sompinit, K., Lersiripong, S., Reamtong, O., Pattarayingsakul, W., Patikarnmonthon, 579 580 N., & Panbangred, W. (2020). In vitro study on novel bioactive peptides with 581 antioxidant and antihypertensive properties from edible rhizomes. LWT - Food Science 582 and Technology, 134, 110227. 583 584 Tacias-Pascaio, V. G., Morellon-Sterling, R., Siar, E-H., Tavano, O., Berenguer-Murcia, A., Fernandez-Lafuente, R. (2020). Use of Alcalase in the production of bioactive 585 peptides: A review. International Journal of Biological Macromolecules 165 (2020) 586 2143-2196. 587 588 589 Xing, Q., Wit, M., Kyriakopoulou, K., Boom, R. M., & Schutyser, M. A. L. (2018). Protein enrichment of defatted soybean flour by fine milling and electrostatic separation. 590

*This work was important for the present study, because the methodologies described helped the authors

to define strategies for the development of the enzymatic hydrolysis methodology to obtain bioactive

- 591 Innovative Food Science and Emerging Technologies, 50, 42-49.
- 592

566

567

568

569

peptides.

Figure S1: Flowchart of enzymatic hydrolysis processes performed in soybean meal (SM) and soybean protein isolate (SPI), using two commercial proteases, Alcalase® and Neutrase® separately.

Supplementary Information - Figure Captions

Figure S2: Liquid chromatography-mass spectrum (LC-MS/MS) for a 46 Da neutral lss
of (A) SM hydrolyzed with Alcalase® and (B) SPI hydrolyzed with Alcalase®.

602	ARTICLE 2
603	
604	Challenges and alternatives for the production of cyclodextrins from the CGTase
605	enzyme from recombinant Bacillus subtilis WB800.
606	Thamara Thaiane da Silva Crozatti ^a , Paula Vitória Larentis ^b , Vanderson Carvalho
607	Fenelon ^c , Juliana Harumi Miyoshi ^d , Júlia Rosa de Brito ^e , Giovanna da Silva Salinas ^f ,
608	Beatriz de Oliveira Mazzotti ^g , Giovanni Cesar Teles ^h , Quirino Alves de Lima Neto ⁱ e
609	Graciette Matioli ^{j*}
610	
611	^a Postgraduate Program in Food Science, State University of Maringá (UEM), Av. Colombo,
612	5790 - 87020-900, Maringá, PR, Brazil – thamarathaiane01@hotmail.com
613	^b Department of Pharmacy, State University of Maringá (UEM), Av. Colombo, 5790 - 87020-
614	900, Maringá, PR, Brazil - paula96vitoria@gmail.com
615	^c Postgraduate Program in Pharmaceutical Sciences, State University of Maringá (UEM), Av.
616	Colombo, 5790 - 87020-900, Maringá, PR, Brazil - vanderson2912@gmail.com
617	^d Postgraduate Program in Pharmaceutical Sciences, State University of Maringá (UEM), A
618	Colombo, 5790 - 87020-900, Maringá, PR, Brazil - jhm_1992@hotmail.com
619	^e Department of Food Engineering, State University of Maringá (UEM), Av. Colombo, 5790 -
620	87020-900, Maringá, PR, Brazil - juliarosa.brito@outlook.com
621	^f Department of Pharmacy, State University of Maringá (UEM), Av. Colombo, 5790 - 87020-
622	900, Maringá, PR, Brazil – ra103148@uem.br
623	^g Department of Pharmacy, State University of Maringá (UEM), Av. Colombo, 5790 - 87020-
624	900, Maringá, PR, Brazil - ra112550@uem.br

- 625 ^h Postgraduate Program in Food Science, State University of Maringá (UEM), Av. Colombo,
- 626 5790 87020-900, Maringá, PR, Brazil giovanycesar@hotmail.com
- 627 ^{*i*}Postgraduate Program in Biosciences and Pathophysiology, State University of Maringá
- 628 (UEM), Av. Colombo, 5790 87020-900, Maringá, PR, Brazil qalneto@uem.br
- 629 ^jDepartment of Pharmacy, Postgraduate Program in Food Science and Postgraduate Program
- 630 in Pharmaceutical Sciences, State University of Maringá (UEM), Av. Colombo, 5790 87020-
- 631 900, Maringá, PR, Brazil gmatioli@uem.br*

- 633 * Corresponding author:
- 634 *E-mail address:* gmatioli@uem.br
- 635 Tel.: +55 44 3011-3868; fax: +55 44 3011-4119

Relevance of the work: This research presents strategies for obtaining cyclodextrins
(CDs) from the recombinant CGTase enzyme, a continuous production system
associated with ultrafiltration, and alternative means of production of CDs, aiming at the
industrial application of the molecule.

641

642 Abstract

643 Cyclodextrins (CDs) have the ability to encapsulate numerous molecules and have 644 applicability in several industrial areas, however, their cost has made their use difficult. To seek alternatives that may enable the use of CDs, the present study evaluated the 645 646 efficiency of the ultrafiltration process in a continuous system to produce CDs from the enzyme cyclomaltodextrin glucanotransferase (CGTase) from recombinant Bacillus 647 subtilis WB800. The possibility of using the crude enzyme as an alternative means of 648 producing CDs was also evaluated. All strategies evaluated in this research proved to be 649 650 promising for the production of CDs, with the production of β -CD being the most 651 efficient (average of 15 mmol/L) using crude recombinant enzyme and a temperature of 652 50 °C. Therefore, the results obtained can contribute to the reduction of stages and costs of production of CDs, favoring their industrial application. 653

654

Keywords: Cyclodextrins, CGTase recombinant, Continuous System, Ultrafiltration.

656

657 Practical Application: This study presents innovative alternatives to produce658 cyclodextrins from the recombinant enzyme.

660 1. INTRODUCTION

661

665

Cyclodextrins (CDs) are cyclic oligosaccharides with expressive applicability in several

662 industrial segments, such as the food, pharmaceutical, cosmetics, chemical sectors,

among others. CDs are formed by 6 (α -CD), 7 (β -CD), and 8 (γ -CD) glucose units,

664 joined by α -1,4 glycosidic bonds, obtained from the transglycosylation reaction of

starch, which is catalyzed by the enzyme cyclomaltodextrin glucanotransferase

666 (*CGTase*) (Ogunbadejo & Al-Zuhair, 2021; Samamed et al., 2022).

Due to the nonpolar characteristic of the CD cavity, inclusion complexes with a wide range of organic and inorganic molecules are capable of formation, modifying the physicochemical properties of the guest molecule, making it possible to increase its stability and solubility. (Del Valle, 2004; Brewster & Loftsson, 2007; Fenelon et al., 2015). Such skills explain the growing interest in the development of innovative biotechnological processes that can enable the industrial use of CDs (Astray et al., 2009; Cid-Samamed et al., 2022).

The research group of the present study obtained promising results when they evaluated the production of CDs from genetically modified bacteria and ultrafiltration systems. (Fenelon et al., 2018; Gimenez et al., 2019). Therefore, it is highly relevant to evaluate new biotechnological alternatives to optimize the production of CDs, especially in Brazil, which has substrate availability and still does not produce the molecule on an industrial scale.

In view of the above, the present study aimed to evaluate strategies for the production of CDs from the CGTase of the recombinant B. subtilis WB800, using a continuous production system associated with ultrafiltration for the semi-purified and purified enzyme, and alternative production means for the crude enzyme.

685 2. MATERIALS AND METHODS

686 2.1 Materials

The materials used were ethanol, soluble starch, commercial corn starch, tryptone, yeast
extract, sodium carbonate, sodium chloride, and agar. β-cyclodextrin and HPLC grade
acetonitrile were purchased from Sigma-Aldrich Ltda, São Paulo, Brazil. The antibiotics
used were Kanamycin Sulfate and Hygromycin B., from *Streptomyces hygroscopicus*.
All other reagents used were of analytical or chromatographic grade.

692 **2.2 Methods**

693 2.2.1 Cultivation and growth of the recombinant *B. subtilis WB800* bacterium

694 For the cultivation and growth of the bacteria, 2xYT medium (liquid and solid) was 695 used, composed of 1.6% tryptone, 1% yeast extract and 0.5% NaCl and 1.5% agar for 696 the solid medium, both supplemented with the antibiotics hygromycin (100 μ g/mL) and kanamycin (25 µg/mL). B. subtilis WB800 containing the recombinant plasmid 697 pWB980-CGTase was grown in a Petri dish containing 2xYT solid medium 698 699 supplemented with kanamycin (25 μ g/ml) and hygromycin (100 μ g/ml) for 12 h at 700 37°C. Then, an isolated colony was added to 5 mL of 2xYT liquid medium 701 supplemented with antibiotics and placed in a shaker at 37 °C overnight at 100 rpm. 702 Subsequently, a pre-inoculum (50 mL) was prepared, also supplemented with both 703 antibiotics. In this pre-inoculum, 0.5 mL of the previously activated enzyme was added to the liquid medium, and it was incubated in a shaker at 37 °C for 24 h at 100 rpm. 704

705 2.2.2 Production means and obtaining the crude extract of recombinant CGTase

For the production of recombinant B. subtilis CGTase, the methodology proposed by 706 707 Fenelon et al. (2015) was used, with modifications. 2xYT medium supplemented with kanamycin (25 µg/mL) was used and 250 mL of liquid medium was prepared. 5 mL 708 709 aliquots of the pre-inoculum were transferred to the production medium, which was incubated at 30 °C, at 100 rpm, for 5 days. 5 mL aliquots were collected every 24 hours 710 711 to determine enzymatic activity. After the period of production of recombinant CGTase, 712 the entire contents were centrifuged at 8,000 rpm, 4 °C for 10 min. The pellet composed 713 of bacteria and insoluble compounds was discarded and a sample of the supernatant 714 containing the enzyme was separated and named crude extract.

715 2.2.3 Obtaining semipurified and purified recombinant CGTase

The procedure for obtaining semi-purified recombinant CGTase was carried out through ultrafiltration processes, according to the methodology described by Fenelon et al. (2015). To obtain purified recombinant CGTase, the technique of biospecific affinity chromatography (CAB) was used, according to the methodology described by Moriwaki et al. (2009). An aliquot of each sample was used to determine the enzyme activity and protein concentration.

722 2.2.4 CDs production assays by CGTase of recombinant *B. subtilis* WB800

For the assays for the production of CDs by the CGTase of semi-purified and purified
B. subtilis WB800, the reaction medium used was: substrate corn starch 5% (w/V),
ethanol 10% (V/V), Tris-HCl 50 buffer mmol/L (pH 8.0) 20% (V/V), CaCl 2 solution 5
mmol/L 10% (V/V) and purified water q.s.p. 100% (Fenelon et al., 2015). The media
were previously sterilized in an autoclave at 121 °C for 15 min.

2.2.4.1 Production of CDs in a continuous ultrafiltration system with CGTase from semipurified and purified recombinant *B. subtilis* WB800

Production was carried out continuously with 5% corn starch (w/V) substrate, in the 730 731 presence of 10% ethanol (V/V), in a glass jacketed reactor coupled to a Hollow Fiber TE-0198 ultrafiltration module equipped with 50,000 NMWL exclusion threshold 732 column. This system provided a constant separation of the CDs and other inhibitory 733 products formed in the reaction medium and, at the same time, the retention of the 734 recombinant CGTase, which returned to the reactor. The system was operated with a 735 736 volume of 800 mL of the reaction medium and followed the parameters optimized by Matioli et al. (2001). The pH was controlled and maintained at 8.0 and the temperature 737 at 50 °C. The concentration of semi-purified and purified recombinant CGTase was 738 739 adjusted to obtain 0.1 U/mL of reaction medium (Fenelon et al., 2018). After the first 12 740 h of reaction, the continuous system was put into operation. Pump power was adjusted to 15%, resulting in an average flow of 4.5 mL/min, which was maintained until the 741 742 drastic reduction of recombinant CGTase activity.

743 2.2.5 Production of CDs in alternative media

The production of CDs by the CGTase of *B. subtilis* WB800 was also studied using alternative media, which were evaluated to verify the efficiency of the recombinant CGTase in the production of CDs directly in the enzyme production step. The media used were: CD production media described in item 2.2.4 (medium 1A and 1B) and enzyme production media described in item 2.2.1, plus 5% corn starch substrate (medium 2A and 2B). All media were kanamycin supplements ($25 \mu g/mL$).

Medium 1A (with the presence of the microorganism): 50 mL of the pre-inoculum
without centrifugation, 5% corn starch substrate (w/V), 50 mmol/L Tris-HCl buffer
(pH 8.0) 20% (V/ V), 5 mmol/L 10% CaCl2 solution (V/V) and purified water q.s.p
100%.

• Medium 1B (only with the presence of the enzyme): 50 mL of centrifuged preinoculum, 5% corn starch substrate (w/V), 50 mmol/L Tris-HCl buffer (pH 8.0) 20%
(V/V), 5 mmol/L 10% CaCl2 solution (V/V) and purified water q.s.p. 100%.

• Medium 2A (with the presence of the microorganism): 50 mL of pre-inoculum
without centrifugation, 5% (w/v) corn starch substrate, 1.6% tryptone, 1% yeast
extract, 0.5% NaCl and purified water q.s.p. 100%.

• Meio 2B (only with the presence of the enzyme): 50 mL of centrifuged preinoculum, 5% corn starch substrate (w/v), 1.6% tryptone, 1% yeast extract, 0.5% NaCl and purified water q.s.p. 100%.

For this evaluation, the tests were divided into two stages: 30 and 50 °C. All media were incubated in shakers at 100 rpm for 5 days. 5 mL aliquots were collected every 24 h for chromatographic analysis.

766 **2.3 Analytical methods**

767 2.3.1 Determination of enzyme activity, determination of protein concentration, 768 and chromatographic determination of CDs

The protein concentration of CGTase from B. subtilis WB800 was determined by the 769 method of Bradford (1976). Enzyme activity was determined according to the 770 771 production of β -CD, quantified in a spectrophotometer at 550 nm (Matioli et al., 1998). 772 The concentrations of α -CD, β -CD, and γ -CD were determined by HPLC using a Waters 2695 liquid chromatograph (Milford, MA, USA) equipped with a Waters 2414 773 774 refractive index detector and a Microsorb-MV 100 NH2 column. Acetonitrile and water 775 solution (60:40) were used as mobile phase and flow rate of 1 mL/min at room temperature. Standard solutions and samples were filtered using 0.45 µm membrane. 776 Analytical curves were constructed for α -CD, β -CD, and γ -CD in different concentration 777

ranges.

779 2.4 Statistical analysis

780 The assays were performed in triplicate and the results of enzymatic activity were

revaluated using analysis of variance (ANOVA) at a 5% significance level.

782

783 3. RESULTS AND DISCUSSION

784 **3.1 Enzymatic activity of CGTase from recombinant** *B. subtilis* WB800

785 After 5 days of production, the enzymatic activity of the crude extract was determined,

which resulted in 1.60 μ mol of β -CD/min/mL. Results of activities and total protein of

semipurified and purified recombinant CGTases are described in Table 1.

Table 1: Enzyme activity, total protein, and specific activity of semipurified andpurified recombinant CGTase.

Fraction	Enzyme activity (μmol β-CD/min/mL)	Total Protein (mg/mL)	Specific Activity (U/mg)
Semipurified	$10,\!40 \pm 0,\!02$	4,31 ± 0,01	$2,40 \pm 0,04$
Purified	$8{,}90\pm0{,}01$	$0,34 \pm 0,03$	$25{,}62\pm0{,}02$

790

In the work carried out by Gimenez et al (2019), which used the same recombinant CGTase of the present research, the value of the enzymatic activity for the purified enzyme was 157.78 μ mol of β -CD/min/mL, and the specific enzymatic activity of 114.92 U/mg. Comparing the results of Gimenez et al. (2019) with the present study, it is possible to observe that the specific enzymatic activity, both for the semipurified and the purified enzyme, was significantly lower. Therefore, to verify the role of the recombinant bacterium in the production of the enzyme, new assays of activation and growth of the recombinant *B. subtilis* WB800 microorganism were carried out and the results obtained were similar to those shown in Table 1, inferring that some elements may have negatively influenced the activity or in the process of secretion of the enzyme in the production medium.

Thus, and according to Zhao et al. (2020), the plasmid pWB980, the same one used in 802 803 the present study, is a promising expression vector in *Bacillus* due to its high copy number and high stability. However, the low rate of transformation of recombinant 804 plasmids in wild-type cells may limit their application. Furthermore, the authors 805 806 describe that plasmid stability consists of structural and segregation stability. Thus, it is hypothesized that the plasmid used for the cloning of the recombinant B. subtilis 807 WB800 bacterium may have suffered some interference in its structural stability during 808 the storage time, implying the segregation structure of the recombinant enzyme. 809

810 **3.2 Production of CDs in continuous ultrafiltration system for 120 h**

The production of CDs using a continuous system associated with the ultrafiltration 811 process was carried out from the semi-purified and purified enzymes. Continuous 812 production was maintained for 120 h (5 days). Aliquots of the ultrafiltrate were 813 collected every 12 hours to determine the concentration of CDs produced. The 814 production of β -CD in the first 12 h, without ultrafiltration, was 17.16 mmol/L. After 815 816 this period, the continuous process with ultrafiltration was started and, after 24 h, it was possible to observe a decrease in the concentration of CDs produced (9.83 mmol/L of β-817 818 CD). The production of CDs was approximately constant for 120 h, which was terminated with 7.14 mmol/L of β -CD (Figure 1). 819

Figure 1: Production of CDs in a continuous ultrafiltration system for 120 h, using
semi-purified recombinant CGTase, 5% (w/V) corn starch substrate, 10% (V/V)
ethanol, pH 8.0.

The production of α -CD and γ -CD in the first 12 h was 0.78 mmol/L and 0.09 mmol/L, respectively, and decreased throughout the 120 h of the assay. With the results obtained, a greater selectivity was observed for the production of β -CD.

Figure 2 shows the production of CDs using the purified recombinant CGTase and, 828 unlike the production from the semi-purified enzyme, the 12 h batch showed more 829 significant production of α -CD and β -CD, that is, 12.35 mmol /L and 9.46 mmol/L, 830 respectively. Similar behavior was verified in the other batches. It is possible to suggest 831 that the purification of the enzyme eliminates compounds that prevent or inhibit the 832 833 production of α -CD by binding to the active site of the enzyme responsible for the production of this CD. A reduction in the production of total CDs of around 30% was 834 835 also observed, while the expectation was the opposite. Therefore, it is possible to suggest that compounds eliminated during purification may be important to maintain or 836

837 increase enzyme activity. Another viable possibility is to alter the protein structure of838 the enzyme during purification.

Figure 2: Production of CDs in a continuous ultrafiltration system for 120 h, using
purified recombinant CGTase, 5% (w/V) corn starch substrate, 10% (V/V) ethanol, pH
842 8.0.

839

Koga et al. (2020) also used the ultrafiltration system with the commercial enzyme Toruzyme® and evaluated the production of CDs in eight batches of 72 h. The authors obtained a maximum production of α-, β- and γ-CD equal to 24.75 mmol/L, 20.59 mmol/L, and 1.66 mmol/L, in the first batch, and a production of 13.51 mmol/L of α-CD and 7.96 mmol/L of β-CD in the last batch. The Toruzyme® enzyme is marketed as an α , β-CGTase, that is, it produces similar amounts of α- and β-CD, requiring a subsequent process of separation of these CDs.

In view of the results obtained in the present study, it is possible to suggest that, even with the low enzymatic activity observed previously (item 3.1), the continuous process associated with ultrafiltration is a promising strategy for the production of CDs, since the production of α - and β -CD, although it decreased after 24 h of production, it was constant throughout the 120 h of the assay, without the need to add more enzyme to the reaction medium during the time of production of the CDs. It is also worth noting that the use of a semi-purified enzyme, in addition to resulting in a more economical process because it does not have expenses with the purification of the enzyme, produces much more β -CD in relation to other CDs, not requiring separation and purification.

859

860 **3.3 Production of CDs in alternative media**

A new challenge for this research was to obtain CDs directly from the production medium of the recombinant CGTase enzyme. The media used were selected based on previous studies, which showed good results in the production of CDs and growth of the recombinant CGTase enzyme (Fenelon et al., 2015; Hao et al., 2017).

Research has also shown that corn starch is one of the most efficient substrates for the production of CDs (Fenelon et al., 2015). Therefore, to analyze the behavior of the bacteria in the production of CDs simultaneously with the step of obtaining the recombinant CGTase enzyme, 5% corn starch (w/v) substrate was added to all tested media. In addition, all media were supplemented with the antibiotic kanamycin (25 μ g/mL), to provide selectivity, since only the recombinant bacterium is resistant to kanamycin.

Figure 3 presents the results obtained in the first step, which used an incubation temperature equal to 30 °C, which is the ideal temperature for the growth of the recombinant CGTase enzyme.

Figure 3 - Chromatographic determination of CDs using CD production medium with
5% (w/v) corn starch substrate with microorganisms (1A medium) and enzyme only (1B
medium), and recombinant bacteria growth medium (2xYT) with the addition of 5% of
the starch substrate with microorganisms (2A medium) and only with enzyme (2B
medium). All media were incubated at 30°C, 100 rpm, for 5 days.

881 With the results obtained, it was verified that all the evaluated media showed considerable production of CDs, even without the enzyme going through the semi-882 purification and/or purification step. The 48 h time showed the highest production of 883 884 CDs, especially β -CD, especially in the 2xYT medium, regardless of the presence of the microorganism or just the enzyme (13.26 and 15.06 mmol/L of β - CD, respectively). 885 886 Also, Gimenez and collaborators (2019) evaluated different means of production of recombinant CGTase and observed that the 2xYT medium was the most efficient for the 887 growth of the bacteria and the production of the enzyme. Thus, the results obtained in 888 889 this research corroborate those obtained in previous research.

Furthermore, it was possible to observe that the concentration of β -CD began to progressively decrease, especially in medium containing microorganisms (1A medium). This event may be related to the fact that the microorganism is producing other enzymes that act in the degradation of the recombinant CGTase or, still, due to the possibility of

the microorganism consuming the CDs over time. Similar behavior was observed by 894 895 Fenelon et al (2018), who evaluated the strategy of producing CDs in 12 h repetitive 896 batches with the semi-purified non-recombinant enzyme and observed a maximum production value equal to 12.6 mmol/L in The first batch and the following batches 897 verified that the production of β -CD progressively decreased until reaching values 898 below 50% of the initial capacity. The authors also evaluated the continuous production 899 900 strategy with ultrafiltration and until 36 h the production of β -CDs remained high (15.3) mmol/L), however, the β -CD yield gradually decreased throughout the assay. 901

Figure 4 shows the results obtained when using an incubation temperature equal to 50
°C, which is the ideal temperature for the growth of the recombinant CGTase
enzyme.

Figure 4 - Chromatographic determination of CDs using CD production medium with
5% (w/v) corn starch substrate with microorganisms (1A medium) and enzyme alone
(1B medium), and recombinant bacteria growth medium (2xYT) with the addition of

5% of the starch substrate with microorganisms (2A medium) and only with enzyme
(2B medium). All media were incubated at 50 °C, 100 rpm, for 5 days.

The temperature of 50 °C was more efficient for the production of CDs, especially for 911 912 β -CD, which showed an average production of approximately 15 mmol/L throughout the entire assay. The production of α -CD was also more significant compared to the 913 previous trial. The CD production medium (Medium 1) showed a slight drop in CD 914 915 yield, while the 2xYT medium maintained a continuous yield. In addition, and similar to 916 the production at 30 °C, medium 1A was the one that showed the highest production of β -CD at the initial time (24 h) and the one that showed the lowest yield in the final 917 918 period (120 h), which it also suggests the production of other enzymes that may be degrading the produced CDs. 919

Gregolim et al (2019) evaluated optimal conditions for the production of CDs for CGTase from B. subtilis WB800 and compared it with the production of strain 37 of *B. firmus* and found that the catalytic properties of the recombinant CGTases were equivalent, that is, the yield of production was similar for the two lines. The authors showed a β-CD yield of approximately 13 mmol/L in 24 h of production, which is lower than that observed in the present study.

926

927 4. CONCLUSION

Although the recombinant B. subtilis WB800 CGTase enzyme showed low enzymatic activity, possibly due to interference in its structural stability during storage, it was possible to conclude that the use of the continuous production system associated with the ultrafiltration process proved to be a beneficial alternative to optimize CD production. Alternative media plus corn starch was an interesting strategy, especially for the production of β -CD, which is currently the most used and commercially available. In addition, the use of the crude enzyme is a promising alternative, as it contributes to the reduction of costs and steps in the production of CDs and, consequently, can favor its industrial application.

937

938 5. ACKNOWLEDGMENT

939 The authors are grateful for the support and financial contribution of Organs Brazilian
940 agencies CAPES, CNPq, Fundação Araucária, AND Finep for the development of this
941 study.

942

943 **6. REFERENCES**

- Astray, G., Mejuto, JC, Morales, J, Rial-Otero, R, & Simal-Gándara, J (2010). Factors
 controlling flavors binding constants to cyclodextrins and their applications in
 foods. Food Research International, 43, 212-1218.
- Bradford, MM (1976). A rapid and sensitive method for the quantitation of microgram
 quantities of protein utilizing the principle of protein-dye binding. Analytical
 Biochemistry, 72, 248-254.
- Brewster, ME, & Loftsson, T (2007). Cyclodextrins as pharmaceutical solubilizers.
 Advanced Drug Delivery Reviews, 59, 645-666.
- Del Valle, EMM (2004). Cyclodextrins and their uses: a review. Process Biochemistry,
 39, 1033-1046.
- 954 Fenelon, VC, Aguiar, MF, Miyoshi, JH, Martinez, CO, & Matioli, G (2015).
 955 Ultrafiltration system for cyclodextrin production in repetitive batches by

- 956 CGTase from *Bacillus firmus* strain 37. Bioprocess and biosystems engineering,
 957 38, 1291-1301.
- Fenelon, VC, Miyoshi, JH, Mangolim CS, Noce, AS, Koga, LN, & Matioli, G (2018).
 Different strategies for cyclodextrin production: Ultrafiltration systems, CGTase
 immobilization, and use of a complexing agent. Carbohydrate Polymers, 192,
 19-27.
- Gimenez, GG, Costa, H, Neto, QAL, Fernandez, MA, Ferrarotti, SA, & Matioli, G
 (2019). Sequencing, cloning, and heterologous expression. of cyclomaltodextrin
 glucanotransferase of *Bacillus firmus* strain 37 in *Bacillus subtilis* WB800.
 Bioprocess and Biosystems Engineering, 42, 621-629.
- Hao, JH, Huang, L-P, Chen, A-T, SUN, J-J, Liu, J-H, Wang, W, & Son, M (2017).
 Identification, cloning, and expression analysis of an alpha-CGTase produced by
 stain Y112. Protein Expression and Purification, 140, 8-15.
- Koga, LN, Fenelon, VC, Miyoshi, JH, Moriwaki, C, Wessel, KBB, Mangolim, CS, &
 Mattioli. G (2020). Economic model for obtaining cyclodextrins from
 commercial CGTase. Brazilian Journal of Pharmaceutical Sciences, 56, 1-14.
- Matioli, G, Zanin, GM, Guimarães, MF, & Moraes, FF (1998) Production and
 purification of CGTase ofalkalophylic *Bacillus* isolated from Brazilian soil.
 Applied Biochemistry and Biotechnology, 70, 267-275.
- Matioli, G, Zanin, GM, & De Moraes, FF (2001) Characterization of cyclodextrin
 glycosyltransferase from *Bacillus firmus* strain no. 37. Applied Biochemistry and
 Biotechnology Part A Enzyme Engineering and Biotechnology, 91-93, 643654.

and Performance Improve of Cyclodextrin Glycosyl Transferases to Cyclodextrins
Production. Química Nova, 32, 9, 2360-2366.

- 982 Cid-Samamed, A, Rakmai, J, Mejuto, JC, Simal-Gandara, J, & Astray, G (2022).
- 983 Cyclodextrins inclusion complex: Preparation methods, analytical techniques, and 984 food industry applications. Food Chemistry, 384, 132467.
- Ogunbadejo, B, & Al-Zuhair, S (2021). MOFs as Potential Matrices in Cyclodextrin
 Glycosyltransferase Immobilization. Molecules, 26, 680.
- Zhao, X, Xu, J, Tan, M, Zhem, J, She, W, Yang, S, Ma, Y, Sheng, H, & Song, H
 (2020). High copy number and highly stable *Escherichia coli–Bacillus subtilis*shuttle plasmids based on pWB980. Microbial Cell Factories,19-25.

ANEXOS

ANEXO 1: Comprovante de aceite/publicação

(International Journal of Food Science and Technology)

De: journalchargeforms@wiley.com < journalchargeforms@wiley.com > Date: qui., 14 de jul. de 2022 às 09:29 Subject: UPDATE: Page order received: IJFS15886, International Journal of Food Science & Technology [ref:_00Dd0eeku._5006T1zr8jI:ref] To: gracietteuem@gmail.com <gracietteuem@gmail.com>

Dear Graciette,

Congratulations again on the publication of your article entitled "Obtaining of bioactive di- and tripeptides from enzymatic hydrolysis of soybean meal and its protein isolate using Alcalase® and Neutrase®" in International Journal of Food Science & Technology

We confirm receipt of a page charge fee form from you and will begin processing an invoice for payment.

We noticed inaccurate page count and billing amount and have corrected the form accordingly. Attached, please find the updated form for your awareness,

Again, thank you for your order, and if you have any questions or concerns, please respond directly to this email.

With regards,

The International Journal of Food Science & Technology Production Team

International Journal of Food Science and Technology 2022

Original article

Obtaining of bioactive di- and tripeptides from enzymatic hydrolysis of soybean meal and its protein isolate using Alcalase® and Neutrase®

Thamara Thaiane da Silva Crozatti,¹ Juliana Harumi Miyoshi,¹ Angélica Priscila Parussolo Tonin,¹ Larissa Fonseca Tomazini,¹ Marco Aurélio Schuler Oliveira,¹ José Uebi Maluf,² Eduardo Cesar Meurer³ & Graciette Matioli¹* (D)

- State University of Maringá (UEM), Av. Colombo, 5790, 87020-900, Maringá, PR, Brazil
 BRFoods, Av. Senador Atílio Fontana, 4040, 85902-160, Toledo, PR, Brazil

3 Federal University of Paraná (UFPR), Advanced Campus Jandaia do Sul, 86900-000, Jandaia do Sul, PR, Brazil

(Received 24 January 2022; Accepted in revised form 24 May 2022)

Summary The obtaining of bioactive di- and tripeptides using Alcalase® and Neutrase® enzymes in the hydrolysis of soybean meal (SM) and its protein isolate (SPI) was evaluated. An innovative system by fast LC-MS/ MS neutral loss screening and de novo sequencing was used to identify bioactive peptides. Soy protein characterisation, gel electrophoresis and antioxidant activity of the obtained peptides were performed. Results achieved showed that the use of Alcalase® and SPI preparation potentiated the peptide breaking bonds and favoured the obtainment of bioactive peptides. The antioxidant activity of tested samples was significantly improved with enzymatic hydrolysis. LC-MS/MS analyses identified nineteen peptides in SM and 51 in SPI, all obtained after hydrolysis with Alcalase® and, according to BIOPEP, with relevant bioactivities and expressive functional potential. Therefore, it is suggested that bioactive peptides achieved in this study can enable the development of new ingredients and provide greater added value to soy byproducts.

Keywords Soybean meal, enzymatic hydrolysis, dipeptides, tripeptides, bioactivities.

Institute of Feed Science

ANEXO 2: Regras da Revista

(International Journal of Food Science and Technology)

1. Author Guidelines

Author Guidelines

Content of Author Guidelines: 1. General, 2. Ethical Guidelines, 3. Submission of Manuscripts, 4. Manuscript Types Accepted, 5. Manuscript Format and Structure, 6. After Acceptance.

Relevant Documents: <u>Page Charge Form</u> Useful Websites: <u>Submission Site</u>, <u>Author Services</u>, <u>Wiley's Ethical</u> <u>Guidelines</u>, <u>Guidelines for Figures</u> Statements: <u>Equity, Diversity and Inclusion</u>

1. GENERAL

Scope

The Editor welcomes the submission of original articles relevant to the science and technology of food and beverages. Contributions are accepted on the strict understanding that the material in whole or in part has not been, nor is being, considered for publication elsewhere. Topics of only narrow local interest will not be accepted unless they have wider potential or consequences. If accepted, papers will become the copyright of the journal.

Please read the instructions below carefully for details on the submission of manuscripts, the journal's requirements and standards as well as information concerning the procedure after a manuscript has been accepted for publication in the *International Journal of Food Science & Technology*. Authors are encouraged to visit **Wiley-Blackwell's Author Services** for further information on the preparation and submission of articles and figures.

2. ETHICAL GUIDELINES

The *International Journal of Food Science & Technology* adheres to the below ethical guidelines for publication and research.

2.1. Authorship and Acknowledgements

Authorship: Authors submitting a paper do so on the understanding that the manuscript has been read and approved by all authors and that all authors agree to

the submission of the manuscript to the Journal. ALL named authors must have made an active contribution to the conception and design and/or analysis and interpretation of the data and/or the drafting of the paper and ALL must have critically reviewed its content and have approved the final version submitted for publication. Participation solely in the acquisition of funding or the collection of data does not justify authorship.

The *International Journal of Food Science & Technology* adheres to the definition of authorship set up by The International Committee of Medical Journal Editors (ICMJE). According to the ICMJE authorship criteria should be based on 1) substantial contributions to conception and design of, or acquisition of data or analysis and interpretation of data, 2) drafting the article or revising it critically for important intellectual content and 3) final approval of the version to be published. Authors should meet conditions 1, 2 and 3.

It is a requirement that all authors have been accredited as appropriate upon submission of the manuscript. Contributors who do not qualify as authors should be mentioned under Acknowledgements.

In accordance with **Wiley's Best Practice Guidelines on Research Integrity and Publishing Ethics** and the **Committee on Publication Ethics**' guidance, *International Journal of Food Science and Technology* will allow authors to correct authorship on a submitted, accepted, or published article if a valid reason exists to do so. All authors – including those to be added or removed – must agree to any proposed change. To request a change to the author list, please complete the **Request for Changes to a Journal Article Author List Form** and contact either the journal's editorial or production office, depending on the status of the article. Authorship changes will not be considered without a fully completed Author Change form. Correcting the authorship is different from changing an author's name; the relevant policy for that can be found in **Wiley's Best Practice Guidelines** under "Author name changes after publication."

Acknowledgements: Under Acknowledgements please specify contributors to the article other than the authors accredited. Please also include specifications of the source of funding for the study and any potential conflict of interests if appropriate. Suppliers of materials should be named and their location (town, state/county, country) included.

Wiley's Author Name Change Policy

In cases where authors wish to change their name following publication, Wiley will update and republish the paper and redeliver the updated metadata to indexing services. Our editorial and production teams will use discretion in recognizing that name changes may be of a sensitive and private nature for various reasons including (but not limited to) alignment with gender identity, or as a result of marriage, divorce, or religious conversion. Accordingly, to protect the author's privacy, we will not publish a correction notice to the paper, and we will not notify co-authors of the change. Authors should contact the journal's Editorial Office with their name change request.
2.2 Clinical Trials

Clinical trials should be reported using the CONSORT guidelines available at <u>http://www.consort-statement.org/</u>. A CONSORT checklist should also be included in the submission material

(http://www.consort-statement.org/mod_product/uploads/CONSORT 2001 checklist.doc).

The International Journal of Food Science & Technology encourages authors submitting manuscripts reporting from a clinical trial to register the trials in any of the following free, public clinical trials registries: **www.clinicaltrials.gov**, clinicaltrials-dev.ifpma.org/, isrctn.org/. The clinical trial registration number and name of the trial register will then be published with the paper.

2.3 Conflict of Interest and Source of Funding

Conflict of Interest: Authors are required to disclose any possible conflict of interest. These include financial (for example patent, ownership, stock ownership, consultancies, speaker's fee).

Source of Funding: Authors are required to specify the source of funding for their research when submitting a paper. Suppliers of materials should be named and their location (town, state/county, country) included. The information will be disclosed in the published article.

2.4 Appeal of Decision

The Editor's decision on a paper is final and cannot be appealed.

2.5 Permissions

If all or parts of previously published illustrations are used, permission must be obtained from the copyright holder concerned. It is the author's responsibility to obtain these in writing and provide copies to the Publishers.

2.6 Copyright Assignment and Open Access

If your paper is accepted, the author identified as the formal corresponding author for the paper will receive an email prompting them to login into Author Services (see 6.3 below); where via the Wiley Author Licensing Service (WALS) they will be able to complete the license agreement on behalf of all authors on the paper.

For authors signing the copyright transfer agreement

If the Open Access option is not selected the corresponding author will be presented with the copyright transfer agreement (CTA) to sign. The terms and conditions of the CTA can be previewed in the samples associated with the Copyright FAQs below:

CTA Terms and Conditions http://authorservices.wiley.com/bauthor/fags_copyright.asp

For authors choosing Open Access

If the Open Access option is selected the corresponding author will have a choice of the following Creative Commons License Open Access Agreements (OAA):

Creative Commons Attribution License OAA Creative Commons Attribution Non-Commercial License OAA Creative Commons Attribution Non-Commercial -NoDerivs License OAA

To preview the terms and conditions of these open access agreements please visit the Copyright FAQs hosted on Wiley Author

Services <u>http://authorservices.wiley.com/bauthor/faqs_copyright.asp</u> and visit <u>http://www.wileyopenaccess.com/details/content/12f25db4c87/Copyright--</u> License.html

If you select the Open Access option and your research is funded by The Wellcome Trust and members of the Research Councils UK (RCUK) you will be given the opportunity to publish your article under a CC-BY license supporting you in complying with Wellcome Trust and Research Councils UK requirements. For more information on this policy and the Journal's compliant self-archiving policy please visit: <u>http://www.wiley.com/go/funderstatement</u>.

2.7 Manuscript Referrals to the Open Access Journal Food Science & Nutrition

This journal works together with Wiley's open access journal, *Food Science & Nutrition*, to enable rapid publication of good quality research that is unable to be accepted for publication by our journal. Authors may be offered the option of having the paper, along with any related peer reviews, automatically transferred for consideration by the Editor of *Food Science & Nutrition*. Authors will not need to reformat or rewrite their manuscript at this stage, and publication decisions will be made a short time after the transfer takes place. The Editor of *Food Science & Nutrition* will accept submissions that report well-conducted research which reaches the standard acceptable for publication. *Food Science & Nutrition* is a Wiley Open Access Journal and article publication fees apply. For more information, please go to **www.foodscience-nutrition.com**.

3. SUBMISSION OF MANUSCRIPTS

Free Format submission

International Journal of Food Science and Technology now offers free format submission for a simplified and streamlined submission process.

Before you submit you will need:

- Your manuscript: this can be a single file including text, figures, and tables, or • separate files – whichever you prefer. All required sections should be contained in your manuscript, including abstract, introduction, methods, results, and conclusions. Figures and tables should have legends. References may be submitted in any style or format, as long as it is consistent throughout the manuscript. If the manuscript, figures or tables are difficult for you to read, they will also be difficult for the editors and reviewers. If your manuscript is difficult to read, the editorial office may send it back to you for revision.
- The title page of the manuscript, including statements relating to our ethics and • integrity policies:
 - o data availability statement
 - funding statement
 - conflict of interest disclosure
 - permission to reproduce material from other sources 0
- Your co-author details, including affiliation and email address. (Why is this important? We need to keep all co-authors informed of the outcome of the peer review process.)
- An ORCID ID, freely available at https://orcid.org. (Why is this important? Your • article, if accepted and published, will be attached to your ORCID profile. Institutions and funders are increasingly requiring authors to have ORCID IDs.)

Manuscripts should be submitted electronically via the online submission site. Go to the journal home page and click on 'Online Submission'. The use of an online submission and peer review site enables rapid distribution of manuscripts and consequentially speeds up the review process. It also allows authors to track the status of their own manuscripts. Complete instructions for submitting a paper are available online and below.

Manuscript submission is a step-by-step process, and little preparation is required beyond having all parts of your manuscript in an electronic format and a computer with an Internet connection and a Web browser. Full help and instructions are provided on-screen. As an author, you will be prompted for author and manuscript details and then to upload your manuscript file(s).

To avoid postal delays, all correspondence is by e-mail. A completed manuscript submission is confirmed by e-mail immediately and your paper enters the editorial process with no postal delay. Your manuscript will have a unique manuscript number and you can check the progress of your manuscript at any time by returning to the online submission site via the **journal home page**. When a decision is made, revisions can be submitted online, with an opportunity to view and respond to all comments.

Peer review is also handled online. Referees are given full instructions and access to the paper on the online submission site. The review form and comments are completed online and immediately made available to the Editor-in-Chief.

This journal is participating in a pilot on **Peer Review Transparency**. By submitting to this journal, authors agree that the reviewer reports, their responses, and the editor's decision letter will be linked from the published article to where they appear on **Publons** in the case that the article is accepted. Authors have the opportunity to opt out during submission, and reviewers may remain anonymous unless they would like to sign their report.

Full instructions and support are available on the site and a user ID and password can be obtained on the first visit. If you require assistance then click the **Get Help Now** link which appears at the top right of every ScholarOne Manuscripts page. If you cannot submit online, please contact the Editorial office.

Suggested Reviewers

Authors are requested to suggest at least 4 recommended reviewers. Reviewers should come from a wide range of countries to reflect the international scope of IJFST. Reviewers should be published academic authors with at least PhD status. Authors should provide institutional email addresses. Webmail addresses such as "@gmail.com" or "@163.com" are not accepted. **DO NOT** recommend reviewers from your own institution or more than one from your own country. Suggested reviewers will be verified by the editorial office.

Helpful suggestions expedite peer review.

3.1. Getting Started

• Launch your web browser (supported browsers include Internet Explorer 6 or higher, Netscape 7.0, 7.1, or 7.2, Safari 1.2.4, or Firefox 1.0.4) and go to the journal's online Submission Site via the **journal home page** and click on 'Online Submission'.

• Log-in or click the 'Create Account' option if you are a first-time user.

• If you are creating a new account.

- After clicking on 'Create Account', enter your name and e-mail information and click 'Next'. Your e-mail information is very important.

- Enter your institution and address information as appropriate, and then click 'Next.'

- Enter a user ID and password of your choice (we recommend using your e-mail address as your user ID), and then select your area of expertise. Click 'Finish'.

• If you have an account, but have forgotten your log in details, go to Password Help on the journals online submission system <u>http://mc.manuscriptcentral.com/ijfst</u> and enter your e-mail address. The system will send you an automatic user ID and a new temporary password.

· Log-in and select 'Author Centre.'

3.2. Submitting Your Manuscript

• After you have logged in, click the 'Submit a Manuscript' link in the menu bar.

• Enter data and answer questions as appropriate. You may copy and paste directly from your manuscript and you may upload your pre-prepared covering letter.

• Click the 'Next' button on each screen to save your work and advance to the next screen.

- Click on the 'Browse' button and locate the file on your computer.
- Select the designation of each file in the drop-down menu next to the Browse button.
- When you have selected all files you wish to upload, click the 'Upload Files' button.

• Review your submission before sending to the Journal. Click the 'Submit' button when you are finished reviewing.

3.3. Blinded Review

All manuscripts submitted to the *International Journal of Food Science & Technology* will be reviewed by at least two experts in the field. The *International Journal of Food Science & Technology* uses single-blinded review. The names of the reviewers will thus not be disclosed to the author submitting a paper.

3.4. Suspension of Submission Mid-way in the Submission Process

You may suspend a submission at any phase before clicking the 'Submit' button and save it to submit later. The manuscript can then be located under 'Unsubmitted Manuscripts' and you can click on 'Continue Submission' to continue your submission when you choose to.

3.5. E-mail Confirmation of Submission

After submission you will receive an e-mail to confirm receipt of your manuscript. If you do not receive the confirmation e-mail after 24 hours, please check your e-mail address carefully in the system. If the e-mail address is correct please contact your IT department. The error may be caused by spam filtering software on your e-mail server. Also, the e-mails should be received if the IT department adds our e-mail server (uranus.scholarone.com) to their whitelist.

3.6. Manuscript Status

You can access ScholarOne Manuscripts any time to check your 'Author Centre' for the status of your manuscript. The Journal will inform you by e-mail once a decision has been made.

3.7. Submission of Revised Manuscripts

Revised manuscripts must be uploaded within 1 month of authors being notified of conditional acceptance pending satisfactory revision. Locate your manuscript under 'Manuscripts with Decisions' and click on 'Submit a Revision' to submit your revised manuscript. Please remember to delete any old files uploaded when you upload your revised manuscript. Please also remember to upload your manuscript document separate from your title page. At this stage authors will be asked to provide Graphical Abstract images, data and funding statements within the manuscript, annotated references, and publication standard figures

Correspondence regarding manuscripts should be sent by e-mail to the Editor-in-Chief. General and IFST correspondence should be sent to:

Institute of Food Science and Technology 5 Cambridge Court 210 Shepherds Bush Road London, W6 7NJ, UK

When preparing a manuscript, authors should refer to a recent issue of the Journal and follow the detailed instructions given below. Please keep a copy of the original manuscript for reference. An e-mail acknowledging the online submission of a manuscript will be sent by the Journal. Any material sent to the Editorial Office will not be returned.

4. MANUSCRIPT TYPES ACCEPTED

Original Papers: These are reports of substantial research less than 5000 words equivalent, including tables, figures, references. Typically a table or figure is equivalent to 150 words while photograph is equivalent to 300 words. These are guidelines only. Original Articles should comprise:

(a) a concise Summary (fewer than 150 words) containing the main results and conclusions;

(b) up to ten keywords that accurately identify the paper's subject, purpose and focus; (c) an Introduction giving essential background but no subheadings; objectives must be clearly stated;

(d) Materials and methods with sufficient full experimental detail (where possible by reference) to permit repetition; sources of material must be given and statistical methods must be specified by reference, unless non-standard;

(e) Results should be presented concisely, using well-designed tables and/or figures; the same data may not be used in both; appropriate statistical data should be given. All data must be obtained with attention to statistical detail in the planning stage. If a sufficiently large number of replicates are not organized before the experiment is undertaken, biological variation is not eliminated satisfactorily. As replicate design has been recognised to be important to biological experiments for a considerable time, the Editor has decided that any paper that appears not to have adequate mathematical treatment of the data will be returned un-refereed;

(f) Discussion should cover the implications and consequences, not merely recapitulating the results; conclusions should be concise;

(g) brief Acknowledgements;

(h) References as shown below.

Review Articles: (fewer than 6000 words) These are concise, critical but constructive and conclusive topical accounts written for non-specialists. References must be in the form shown below. A small honorarium may be given.

Letters to the Editor: These are brief comments on material published in previous issues; they are published at the discretion of the Editor. They are the only items not subject to multiple peer review.

5. MANUSCRIPT FORMAT AND STRUCTURE

Initial Submissions

Authors should very carefully consider the preparation of papers to ensure that they communicate efficiently. Papers are much more likely to be accepted if they are carefully designed and laid out, have few or no errors, are concise, and conform to the style and instructions. They will also be published with much less delay than those that require much scientific and editorial correction.

The Editor reserves the right to make literary corrections and to make suggestions to improve brevity.

It is important that authors take care in submitting a manuscript that is written in plain language and adheres to published guidelines (see the new *Fowler's Modern English Usage* 3rd ed. Oxford: Clarendon Press, 1996; Hall G.M. How to write a paper. London: BMJ Publishing, 1994).

Language: The language of publication is UK English. Authors for whom English is a second language must have their manuscript professionally edited by an English speaking person before submission to make sure the English is of high quality. An English Language Editing Service is available. Ensure your paper is clearly written in standard, scientific English language appropriate to your discipline. <u>Visit our site</u> to learn about the options. Please note that using the Wiley English Language Editing Service that your paper will be accepted by this journal.

5.1. Page Charge

From the 1st March 2007 all manuscripts submitted are subject to a charge of 100GBP for each page in excess of seven printed journal pages (approximately 21 pages of double-spaced typescript). The editor may decide to waive this charge in exceptional circumstances. Please fill in the **Page Charge Form** and send it to the Production Editor at **<u>ijfs@wiley.com</u>**. The invoice will be sent after the article is included in an issue.

5.2. Format

Standard Usage, Abbreviations and Units: Spelling and hyphenation should conform to *The Concise Oxford English Dictionary*. Statistics and measurements should always be given in figures, e.g. 10 min, except when the number begins a sentence. When the number does not refer to a unit of measurement it should be spelt in full unless it is 100 or greater.

Abbreviations should be used sparingly and only if a lengthy name or expression is repeated throughout the manuscript, and never in the title. The abbreviated name or

expression should be cited in full at first usage, followed by the accepted abbreviation in parentheses.

Metric SI units should generally be used except where they conflict with current practice or are confusing. For example 1.5 I rather than 1.5×10^{-3} m³, or 3 mm rather than 3×10^{-3} m. Chemical formulae and solutions must specify the form used, e.g. anhydrous or hydrated, and the concentration must be in clearly defined units. Common species names should be followed by the Latin binomial (underlined) at the first mention. For subsequent use the generic name should be contracted to a single letter if it is unambiguous.

Main Text: Please type the text consistently e.g. take care to distinguish between '1' (one) and 'l' (lower case L) and '0' (zero) and 'O' (capital O), etc.

5.3. Structure

All manuscripts submitted to *The International Journal of Food Science* & *Technology* should include:

Title Page: The title page should carry an informative title that reflects the content, a running title (less than 46 characters including spaces), the names of the authors, and the place(s) where the work was carried out. The full postal address plus e-mail address of the indicated corresponding author must be given. Up to ten keywords or very brief phrases must be given to aid data retrieval and indexing.

Graphical abstract: Please upload the Graphical Abstract as the first file in the Manuscript. Please ensure that it is clearly sub-titled 'Graphical Abstract.' The Graphical Abstract should be designed to be read on-line in conjunction with the text abstract, it should be approximately square, ideally in colour and should contain a high impact Figure, Graph or Photograph that summarises the key findings of your research.

Summary (or Abstract), used in Original Papers and Reviews: Optimizing Your Abstract for Search Engines

Many students and researchers looking for information online will use databases. By optimizing your article for search engines, you will increase the chance of someone finding it. This in turn will make it more likely to be viewed and/or cited in another work. We have compiled these guidelines to enable you to maximize the web-friendliness of the most public part of your article.

Well written abstracts attract both the general reader and the specialist and greatly improve the impact of your paper. Abstracts should give information specific to your article and comprise short punchy sentences with an introduction of one or two sentences followed by comparative data between treatments where interesting effects were observed. This should be followed by concise conclusions.

Statistical Methods: Statistical methods used should be defined and, where appropriate, supported by references. Useful statistical references are as follows:

Statistical Textbooks
Cochran, W.G., Cox, G.M. (1992). *Experimental Designs*, 2nd edn. New York: Wiley.
Cox, D.R. (1992). *Planning of Experiments*. New York: Wiley.
Draper, N.R., Smith, H. (1998). *Applied Regression Analysis*, 3rd edn. New York: Wiley.
Sokal, R.R., Rohlf, F.J. (1994) *Biometry*, 3rd edn. San Francisco: W.H. Freeman.
Steel, R.G.D., Torrie J.H., Dickey, D. (1996). *Principles and Procedures of Statistics*.
McGraw-Hill.
General Papers
Chatfield, C. (1985). The initial examination of data. *Journal of the Royal Statistical Society A*, **148**, 214-253
Preece, D.A. (1987). Good statistical practice. *The Statistician*, **36**, 397-408.

Repeated Measures

Kenward, M.G. (1987). A method for comparing profiles of repeated measurements. *Applied Statistics*, **36**, 296-308.

5.4. References

References follow the Harvard system of referencing. References in the text should cite the authors' names followed by the date of their publication, unless there are three or more authors when only the first author's name is quoted followed by *et al*. e.g. Smith *et al*. (1999) or Jones and Smith (2000). Add a, b, c etc. to distinguish between two or more references with the same author name and year date (e.g. Jones 1999a,b). References at the end of the paper should be listed in alphabetical order with the title of the article or book and the title of the journal given in full, as shown:

Bucky, A. R., Robinson, D.S. & Hayes, P. R. (1987). Enhanced deactivation of bacterial lipases by a modified UHT treatment. *International Journal of Food Science and Technology*, **22**, 35-40.

Stone, H. & Sidel, J. L. (1985). *Sensory Evaluation Practices*. Pp. 56-59. Orlando, USA: Academic Press.

Dubois, P. (1983). Volatile phenols in wines. In: *Flavour of Distilled Beverages* (edited by J. R. Piggott). Pp. 110-119. Chichester, UK: Ellis Horwood.

Unpublished work must only be cited where necessary, and only in the text. Copies of references in press in other journals must be supplied with submitted typescripts. It is essential that all citations and references are carefully checked before submission, as mistakes or omissions will cause delays.

References to material on the World Wide Web can be given, but only if the information is available without charge to readers on an official site. Authors will be asked to provide electronic copies of the cited material for inclusion on the *International Journal of Food Science and Technology* homepage at the discretion of the Editors. The format of citations is:

Beckleheimer, J. (1994). Online reference included in article URL <u>http://www.sample_url.bibliography/html</u>. Accessed 01/04/2004.

The editor and publisher recommend that citation of online published papers and other material should be done via a DOI (digital object identifier), which all reputable online published material should have - see **www.doi.org/** for more information. If an author cites anything which does not have a DOI they run the risk of the cited material not being traceable.

We recommend the use of a tool such as Reference Manager for reference management and formatting.

Reference Manager reference styles can be searched for here: **www.refman.com/support/rmstyles.asp**

5.5. Tables, Figures and Figure Legends

Tables: Tables should be few in number, carefully designed, uncrowded, and include only essential data. Each must have an Arabic number, e.g. Table 3, a self-explanatory caption and be on a separate sheet. Vertical lines must not be used.

Figures: For initial submissions figures should be sufficiently clear so that editors and reviewers can easily interpret the data. Figures should be numbered and include a descriptive title. Always include a citation in the text for each figure using Arabic numbers, e.g. Fig. 3. Axes on graphs should always be titled and include units where appropriate. Obscure abbreviations are not helpful and should be avoided. Images such as photographs or diagrams should be sharp and be sufficiently large so that they are easily interpreted.

5.6. Author Statements:

Data Availability: Please include a data availability statement, under the heading "Data Availability Statement", even if no data is available. This may most conveniently be placed after the acknowledgments and before the References Section. Please select the appropriate statement from the standard templates

at: https://authorservices.wiley.com/author-resources/Journal-Authors/openaccess/data-sharing-citation/data-sharing-policy.html#standardtemplates .

NOTE: Where authors choose not to share their data a simple statement such as "Research data are not shared" is sufficient.

If data is available from an open source such as a repository, the manuscript should include a citation for the available data in the references section. This citation should be the last reference in the section.

How to cite: [dataset]Authors; Year; Dataset title; Data repository or archive; Version (if any); Persistent identifier (e.g. DOI) The term [Dataset] will be removed before publication. The links provided to the available data should connect to the relevant actual data as described in the Data Availability Statement.

Ethical Guidelines: Please provide a statement describing any ethical guidelines under which your research was carried out. Where ethics approval was not required a simple statement that "Ethics approval was not required for this research." is sufficient. This should be placed below the Acknowledgements section. Where appropriate, please state the approval from the relevant institutional ethics committee and/or how you dealt with the issues of protecting your subjects.

Conflict of Interest: You must provide a brief statement describing any potential conflict of interest in the work you are reporting here. If there is no conflict of interest, a simple statement to that effect is sufficient.

5.7. Annotated References:

Please annotate 4 to 5 references with a short note placed immediately below the reference within your reference list. Annotations should briefly describe in 2 or 3 sentences your reasons for citing that article and why how you feel it was important for your own research.

5.8. Revised Submissions:

If you are invited to revise your manuscript after the initial round of peer review, the editors will also request the revised manuscript to be formatted more closely to journal requirements as described below.

Author Response: Please include a detailed point by point response to the decision letter with your resubmission. In order to help editors and reviewers focus on your edits please highlight key changes using Tracking or Highlights. Remove highlights for grammatical or repeated format changes to ensure the revised manuscript text Tables: Tables should be uploaded as separate files.

Figures: Figures should be submitted as separate files. Artwork should be submitted online in electronic form. Detailed information on our digital illustration standards is available on the Wiley-Blackwell website **here**. Approval for reproduction/modification of any material (including figures and tables) published elsewhere should be obtained by the authors/copyright holders before submission of the manuscript. Contributors are responsible for any copyright fee involved.

Preparation of Electronic Figures for Publication

Although low quality images are adequate for review purposes, print publication requires high quality images to prevent the final product being blurred or fuzzy. Submit EPS (line art) or TIFF (halftone/photographs) files only. MS PowerPoint and Word Graphics are unsuitable for printed pictures. Do not use pixel-oriented programmes. Scans (TIFF only) should have a resolution of at least 300 dpi (halftone) or 600 to 1200 dpi (line drawings) in relation to the reproduction size (see below). EPS files should be saved with fonts embedded (and with a TIFF preview if possible).

For scanned images, the scanning resolution (at final image size) should be as follows to ensure good reproduction: line art: >600 dpi; halftones (including gel photographs): >300 dpi; figures containing both halftone and line images: >600 dpi.

Further information can be obtained at Wiley-Blackwell's guidelines for figures: <u>http://authorservices.wiley.com/bauthor/illustration.asp</u>

Check your electronic artwork before submitting it: **www.authorservices.wiley.com/bauthor/eachecklist.asp**

Permissions: If all or parts of previously published illustrations are used, permission must be obtained from the copyright holder concerned. It is the author's responsibility to obtain these in writing and provide copies to the Publisher.

* To read PDF files, you must have Acrobat Reader installed on your computer. If you do not have this program, this is available as a free download from the following web address: <u>http://www.adobe.com/products/acrobat/readstep2.html</u>

Figure Legends: Self-explanatory legends of all figures should be included separately under the heading 'Legends to Figures'. In the full-text online edition of the journal, figure legends may be truncated in abbreviated links to the full screen version. Therefore, the first 100 characters of any legend should inform the reader of key aspects of the figure.

6. AFTER ACCEPTANCE

Upon acceptance of a paper for publication, the manuscript will be forwarded to the Production Editor who is responsible for the production of the journal.

6.1. Proof Corrections

The corresponding author will receive an e-mail alert containing a link to a website. A working e-mail address must therefore be provided for the corresponding author. The proof can be downloaded as a PDF (portable document format) file from this site.

Acrobat Reader will be required in order to read this file. This software can be downloaded (free of charge) from the following

website: **www.adobe.com/products/acrobat/readstep2.html**. Further instructions will be sent with the proof. Hard copy proofs will be posted if no e-mail address is available; in your absence, please arrange for a colleague to access your e-mail to retrieve the proofs.

Proofs must be returned to the Production Editor within three days of receipt.

As changes to proofs are costly, we ask that you only correct typesetting errors.

Other than in exceptional circumstances, all illustrations are retained by the publisher. Please note that the author is responsible for all statements made in their work, including changes made by the copy editor.

6.2. Early View (Publication prior to Print)

The *International Journal of Food Science & Technology* is covered by Wiley-Blackwell's Early View service. Early View articles are complete full-text articles published online in advance of their publication in a printed issue. Early View articles are complete and final. They have been fully reviewed, revised and edited for publication, and the authors' final corrections have been incorporated. Because they are in final form, no changes can be made after online publication. The nature of Early View articles means that they do not yet have volume, issue or page numbers, so Early View articles cannot be cited in the traditional way. They are therefore given a Digital Object Identifier (DOI), which allows the article to be cited and tracked before it is allocated to an issue. After print publication, the DOI remains valid and can continue to be used to cite and access the article.

6.3. Author Services

Online production tracking is available for your article through Wiley-Blackwell's Author Services. Author Services enables authors to track their article - once it has been accepted - through the production process to publication online and in print. Authors can check the status of their articles online and choose to receive automated e-mails at key stages of production. The author will receive an e-mail with a unique link that enables them to register and have their article automatically added to the system. Please ensure that a complete e-mail address is provided when submitting the manuscript. Visit <u>http://authorservices.wiley.com/bauthor/</u> for more details on online production tracking and for a wealth of resources including FAQs and tips on article preparation, submission and more.

For more substantial information on the services provided for authors, please see <u>Wiley-Blackwell Author Services</u>

6.4. Author Material Archive Policy

Please note that unless specifically requested, Wiley-Blackwell will dispose of all hardcopy or electronic material submitted two months after publication. If you require the return of any material submitted, please inform the editorial office or production editor as soon as possible.

6.5. Offprints and Extra Copies

Free access to the final PDF offprint of your article will be available via Author Services only. Please therefore sign up for Author Services if you would like to access your article PDF offprint and enjoy the many other benefits the service offers. Additional paper offprints may be ordered online. Please click on the following link, fill in the necessary details and ensure that you type information in all of the required fields: **www.sheridan.com/wiley/eoc**

Note to NIH Grantees: Pursuant to NIH mandate, Wiley-Blackwell will post the accepted version of contributions authored by NIH grant-holders to PubMed Central upon acceptance. This accepted version will be made publicly available 12 months after publication. For further information, see <u>www.wiley.com/go/nihmandate</u>

Equity, Diversity and Inclusion

The International Journal of Food Science and Technology aims to foster inclusive science that reflects the disciplinary, human, and geographic diversity of the food science community. We recognize that many groups are under-represented in research, and we are committed to increasing diversity and inclusion in research and publishing from applicants of all ethnicities, races, religions, sexes, sexual orientations, gender identities, national origins, disabilities, ages, or other individual status.

ANEXO 3: Comprovante de aceite/publicação

(Food Science and Technology)

De: Adriano Cruz <<u>onbehalfof@manuscriptcentral.com</u>> Date: ter., 6 de dez. de 2022 às 23:42 Subject: Food Science and Technology - Decision on Manuscript ID CTA-2022-1041.R1 To: <<u>qmatioli@uem.br</u>>

07-Dec-2022

Dear Dr. Matioli:

It is a pleasure to accept your manuscript entitled "Challenges and alternatives for the production of cyclodextrins from the CGTase enzyme from recombinant Bacillus subtilis WB800" in its current form for publication in the Food Science and Technology. The comments of the reviewer(s) who reviewed your manuscript are included at the foot of this letter.

Thank you for your fine contribution. On behalf of the Editors of the Food Science and Technology, we look forward to your continued contributions to the Journal.

Sincerely, Dr. Adriano Cruz Editor-in-Chief, Food Science and Technology <u>adriano.cruz@ifri.edu.br</u>

Original Article	ISSN 0101-2061 (Print)
Food Science and Technology	ISSN 1678-457X (Online)
	CO BY
DOI: https://doi.org/10.1590/fst.104122	

Challenges and alternatives for the production of cyclodextrins from the CGTase enzyme from recombinant *Bacillus subtilis* WB800

Thamara Thaiane da Silva CROZATTI¹, Paula Vitória LARENTIS², Vanderson Carvalho FENELON³, Juliana Harumi MIYOSHI³, Júlia Rosa de BRITO⁴, Giovanna da Silva SALINAS², Beatriz de Oliveira MAZZOTTI², Giovanni Cesar TELES¹, Quirino Alves de LIMA NETO⁵, Graciette MATIOLI^{1,2,3*} ⁽³⁾

Abstract

Cyclodextrins (CDs) have the ability to encapsulate numerous molecules and have applicability in several industrial areas, however, their cost has made their use difficult. To seek alternatives that may enable the use of DCs, the present study evaluated the efficiency of the ultrafiltration process in a continuous system to produce CDs from the enzyme cyclomaltodextrin glucanotransferase (CGTase) from recombinant *Bacillus subtilis* WB800. The possibility of using the crude enzyme as an alternative means of producing CDs was also evaluated. All strategies evaluated in this research proved to be promising for the production of CDs, with the production of β -CD being the most efficient (average of 15 mmol/L) using crude recombinant enzyme and a temperature of 50 °C. Therefore, the results obtained can contribute to the reduction of stages and costs of production of CDs, favoring their industrial application.

Keywords: cyclodextrins; CGTase recombinant; continuous system; ultrafiltration.

Practical Application: This study presents innovative alternatives to produce cyclodextrins from the recombinant enzyme.

(Food Science and Technology)

1. Sobre o jornal

Informação básica

Ciência e Tecnologia de Alimentos, de periodicidade de fluxo contínuo, Sociedade Brasileira de Ciência e Tecnologia de Alimentos - SBCTA, com o objetivo de publicar artigos científicos e comunicações na área de ciência de alimentos.

Seu título abreviado é **Food Sci. Technol (Campinas)**, que deve ser utilizado em bibliografias, notas de rodapé e referências e legendas bibliográficas.

Fator de Impacto 2022 JCR 2.6

Fontes de indexação

Os artigos publicados na **revista** são resumidos ou indexados por:

- Resumo de Ciência e Tecnologia de Alimentos (FSTA)
- Agris
- Resumos Químicos
- Peri
- Índice de Citação Científica Expandido (SciSearch)
- Journal Citation Reports/Science Edition
- Instituto de Informação Científica ISI
- CAB Internacional
- LATINDEX
- SCOPUS

Propriedade intelectual

Todo o conteúdo da revista, exceto quando identificado, é licenciado sob uma atribuição Creative Commons do tipo BY.

Patrocinador

A revista recebe apoio financeiro de:

FAPESP

Ministério da

CNPq, CAPES e MCT

Ministério Ciência e Tecnologia da Educação

2. **Conselho Editorial**

Editor chefe

- Adriano Gomes da Cruz IFRJ, -• email: food@globo.com
- Carlos Augusto Fernandes de Oliveira USP • (carlosaf@usp.br)

Editor associado

- Carlos Humberto Corassin USP • (<u>carloscorassin@usp.br</u>)
- Carmem Silva Fávaro Trindade USP (<u>carmenft@usp.b</u>r)
- Elane Prudencio UFSC elane.prudencio@ufsc.br •
- Erick Almeida Esmerino UFRRJ • (erick.almeida@hotmail.com)
- Lucia Maria Jaeger de Carvalho UFRJ • (<u>luciajaeger@gmail.com</u>)
- Marciane Magnani UFPB (magnani2@gmail.com) .
- Sueli Rodrigues UFC suelir@gmail.com •
- Tatiana Colombo Pimentel IFPR . (<u>tatipimentel@hotmail.com</u>)
- Renan Campos Chisté – UFPA (rcchiste@ufpa.br)

gerente de publicação

 Marcos Luiz Alves – Sociedade Brasileira de Ciência e Tecnologia de Alimentos – Campinas – São Paulo -Brasil

Conselho Editorial

- Adriana Cristina Oliveira Silva UFF, Brasil
- Adriana Gambaro Universidad de La República, Uruguai
- Amin Mousavi Khaneghah UNICAMP, Brasil
- Amir Mortazavian Shahid Beheshti University of Medical Sciences, Irã
- Ana Clarissa dos Santos Pires UFV, Brasil
- Anderson de Souza Sant'Ana UNICAMP, Brasil
- António MOS Vicente Universidade do Minho Braga, Portugal
- Bárbara Cristina Euzébio Pereira Dias de Oliveira IFRJ, Brasil
- Carlos Alberto Rodrigues Anjos, UNICAMP, Brasil
- Carlos Adam Conte Júnior UFRJ, Brasil
- Cínthia Baú Betim Cazarin UNICAMP, Brasil
- Cristiano Ragagnin de Menezes UFSM, Brasil
- Cristina Alamprese Universidade de Milão, Itália
- Daniel Granato Instituto de Recursos Naturais (Luke), Finlândia
- Daniel Perrone UFRJ, Brasil
- Denise Rosane Perdomo Azeredo IFRJ, Brasil
- Eliana de Fátima Marques de Mesquita UFF, Brasil
- Eliane Teixeira Mársico UFF, Brasil
- Erico Marlon de Moraes Flores UFSM, Brasil
- Flávia Aline Andrade Calixto FIPERJ, Brasil
- Francisco J. Barba Universidade de Valência, Espanha
- Filomena Nazzaro Conselho Nacional de Pesquisa da Itália, Itália
- Franco Maria Lajolo FCF/USP, Brasil
- Gabriela Alves Macedo UNICAMP, Brasil
- Giovanni Nero Universidade de Pádua, Itália
- Glaucia Maria Pastore FEA/UNICAMP, Brasil
- Helena Maria André Bolini, UNICAMP, Brasil
- Helena Teixeira Godoy UNICAMP, Brasil
- Hilana Ceotto Vigoder IFRJ, Brasil
- Igor de Almeida UFRJ, Brasil
- Janaina dos Santos Nascimento IFRJ, Brasil
- Jorge Herman Behrens UNICAMP, Brasil

- Jorge Mancini Filho FCF/USP, Brasil
- Jorge Manuel Lorenzo Centro Tecnológico de la Carne de Galícia, Espanha
- Juliana Azevedo Lima Pallone UNICAMP, Brasil
- Karen Signori Pereira UFRJ, Brasil
- Leonardo Emanuel de Oliveira Costa IFRJ, Brasil
- Liliana de Oliveira Rocha UNICAMP, Brasil
- Lilian Regina Barros Mariutti UNICAMP, Brasil
- Lourdes Maria Corrêa Cabral EMBRAPA, Brasil
- Lúcia Maria Jaeger de Carvalho UFRJ, Brasil
- Marcelo Cristianini- UNICAMP, Brasil
- Márcia Cristina Silva IFRJ, Brasil
- Márcia Cristina Teixeira Ribeiro Vidigal UFV, Brasil
- Maria Alice Zarur Coelho, UFRJ, Brasil
- Maria Inês Bruno Tavares UFRJ, Brasil
- Maria Teresa Pedrosa Silva Clerici UNICAMP, Brasil
- Mariana Simões Larraz Ferreira UNIRIO, Brasil
- Marina Venturini Copetti UFSM, Brasil
- MaryAnne Drake Universidade de Davis, EUA
- Marzia Alzenzio Universidade de Foggia, Itália
- Matthew Mcsweeney Acadia University, Canadá
- Michael Mullan Dairy Science Food Technology, Reino Unido
- Mônica Queiroz de Freitas UFF, Brasil
- Muthupandian Ashokkumar Universidade de Melbourne, Austrália
- Nagendra Shah Universidade de Hong-Hong, Hong Kong
- Paulo César Stringheta UFV, Brasil
- Paulo José do Amaral Sobral USP, Brasil
- Rana Muhammad Aadil Universidade de Agricultura, Paquistão
- Renata Valeriano Tonon EMBRAPA, Brasil
- Roopesh Mohandas Syamaladevi University of Alberta, Canadá
- Ricardo Nuno Pereira Universidade do Minho, Portugal
- Ricardo Schmitz Ongaratto UFRJ, Brasil
- Senaka Ranadheera Universidade de Melbourne, Austrália
- Simone Lorena Quitério IFRJ, Brasil
- Tatiana Saldanha UFRRJ, Brasil
- Vania Margaret Flosi Paschoalin UFRJ, Brasil
- Verônica Ortiz Alvarenga UFMG, Brasil
- Witoon Prinyawiwatkul Louisiana State University,

3. Instruções aos autores

Food Science and Technology (CTA) publica artigos científicos na área de ciência de alimentos. Os trabalhos devem ser escritos em inglês e seguir as normas editoriais abaixo.

Política Editorial

Food Science and Technology (CTA) aceita submissões de artigos de revisão e artigos que apresentem resultados de pesquisas originais. Os artigos são avaliados pelo processo de revisão por pares duplo-cego.

A rejeição de um manuscrito pode ser decidida pelo Editor Chefe, Editor Associado Adjunto e Editores Associados. A aceitação de um manuscrito depende da avaliação de pelo menos dois pareceristas anônimos designados pelo Conselho Editorial. As revisões dos pareceristas serão enviadas aos autores para orientá-los em todas as alterações necessárias relacionadas aos seus manuscritos. Em caso de discordância entre seus pareceres, a decisão final caberá ao Editor responsável pelo manuscrito ou caso este julgue necessário, outro parecerista será ouvido, e os três pareceres serão analisados pelo Conselho Editorial da sbCTA, quem finalmente decidirá sobre a aceitação do manuscrito.

Os trabalhos aceitos serão publicados na versão online desta revista e na biblioteca SciELO em até doze meses.

Autoria

O crédito de autoria deve ser baseado apenas em participações e contribuições substanciais para o desenvolvimento do trabalho.

O autor correspondente atuará em nome de todos os coautores como correspondente principal do escritório editorial durante o processo de submissão e revisão.

Termos de acordo e envio de direitos de reprodução gráfica

O autor correspondente deve assinar e enviar o Termo de Consentimento e Cessão de Direitos de Reprodução Gráfica ao Conselho Editorial da sbCTA em nome de todos os coautores. Ao assinar os "Termos de Acordo e Submissão de Direitos de Reprodução Gráfica", os autores concordam:

- Que nem este trabalho nem outro com conteúdo substancialmente semelhante já foi publicado anteriormente ou está sendo considerado para publicação em outro lugar;
- Submeter o trabalho e concordar em nomear o autor correspondente indicado;
- Conceder à Sociedade Brasileira de Ciência e Tecnologia de Alimentos (sbCTA) os direitos de reprodução gráfica caso o trabalho seja aceito para publicação.

Conteúdo

Pesquisa original

O manuscrito deve apresentar resultados claros e concisos de uma pesquisa baseada em métodos científicos.

Artigos de revisão

Os manuscritos devem apresentar um panorama pertinente ao tema da Revista com foco na literatura publicada nos últimos cinco anos.

Pesquisa envolvendo seres humanos

Ao apresentar resultados de pesquisas envolvendo seres humanos, deve ser informado o número do processo de aprovação concedido pelo Comitê de Ética em Pesquisa (resolução nº 196/96, de 10 de outubro de 1996, Conselho Nacional de Saúde).

Estrutura de Papel

A revisão da estrutura do manuscrito e das informações fornecidas é de responsabilidade dos autores. Os manuscritos originais não devem exceder 16 páginas (excluindo as referências). O texto deve ser apresentado com espaçamento duplo entre linhas no formato de uma coluna. Todas as linhas devem estar niveladas com a margem esquerda da coluna, deixando uma margem de 2,5 cm à direita e à esquerda. As linhas de texto devem ser numeradas sequencialmente ao longo do texto. Todas as páginas devem ser numeradas sequencialmente (ver item "Formato dos Arquivos" no final deste guia).

Carta de apresentação

A carta de apresentação do manuscrito deve incluir o seguinte:

- <u>Declaração de relevância e importância do trabalho</u> : um breve texto com no máximo 100 palavras descrevendo a relevância do trabalho de forma concisa;
- <u>Títulos</u> :
- Título em inglês;
- Cabeçalho da página (não mais que 6 palavras).

Folha de rosto

A página de título do manuscrito deve incluir o seguinte:

- Nome completo e e-mail dos autores;
- Nomes abreviados dos autores para citação (Ex.: nome completo: José Antonio da Silva; nome abreviado: Silva, JA);
- Filiação dos autores: nome da instituição a que pertence cada autor (nome completo e siglas, endereço postal completo, CEP, cidade, estado e país). Por favor, correlacione cada autor à sua instituição correspondente;
- Informações de correspondência dos autores (nome completo, endereço postal completo, números de telefone e fax e endereço de e-mail do autor correspondente).

Resumo, Aplicação prática e página de palavras-chave

Abstrato

- Estar somente em inglês;
- Ser um único parágrafo contendo menos de 200 palavras;
- Declarar claramente o objetivo principal e a justificativa do artigo;
- Apresentar resumidamente as principais conclusões;
- Se aplicável, descreva os métodos e resultados dos materiais;
- Resuma as conclusões;
- Seja parcimonioso com abreviaturas e acrônimos.

O resumo não deve incluir:

- notas de rodapé;
- Dados significativos e valores estatísticos;
- Referências.

Aplicação prática

Texto curto com no máximo 85 caracteres, indicando inovações e características importantes do estudo. A "Aplicação Prática" será publicada.

Palavras-chave

O manuscrito deve ter no mínimo três (3) e no máximo seis (6) Palavras-chave. As palavras-chave devem estar apenas em inglês. Evite usar termos incluídos no texto principal do manuscrito nas palavras-chave.

páginas de texto

O manuscrito deve ser organizado da seguinte forma:

- Introdução;
- Materiais e métodos; deve incluir delineamento experimental e análise estatística de dados;
- Resultados e Discussão (também podem ser separados);
- Conclusões;
- Referências;
- Agradecimentos (opcional).

No texto principal:

- Abreviaturas, acrônimos e símbolos devem ser claramente definidos na primeira utilização;
- Notas de rodapé não são permitidas;
- O uso de títulos e subtítulos é encorajado quando necessário, mas faça uso deles sem comprometer a clareza do texto. Devem ser numeradas na ordem em que aparecem no texto;
- As equações devem ser geradas por computador e numeradas sequencialmente com algarismos arábicos entre parênteses na ordem em que são referidas no texto. As equações devem ser referenciadas no texto e no local indicado pelo autor. Por favor, não envie imagens de equações. Não serão aceitas equações fornecidas separadamente; serão aceitos apenas aqueles inseridos no texto.

Tabelas, Figuras e Gráficos

Forneça no máximo sete (7) Tabelas, Figuras e Gráficos. Devem ser numeradas em algarismos arábicos na ordem em que são destacadas no texto. No *Manuscrito.pdf* – versão para avaliação dos revisores e no *Manuscrito.doc* – versão para produção, tabelas, equações, figuras, quadros e suas respectivas legendas devem constar no corpo do texto nos locais indicados pelos autores. Veja abaixo as instruções da versão para produção.

Figuras e gráficos (versão para produção)

Figuras e quadros devem ser fornecidos no texto principal e numerados consecutivamente com algarismos arábicos e suas respectivas legendas devem ser incluídas no texto principal no local indicado pelos autores. Ao fornecer figuras contendo fotografias ou micrografias, certifique-se de que sejam digitalizadas em alta resolução para que cada foto tenha pelo menos 1.000 pixels de largura. Todas as fotografias devem conter o nome do autor. Os gráficos devem ser usados para apresentar arquivos, esquemas e fluxogramas.

Tabelas (versão para produção)

As tabelas devem ser fornecidas no texto principal e numeradas com algarismos arábicos. Devem ser inseridos no texto no local indicado pelo autor. As tabelas devem ser preparadas usando o Microsoft Word® 2007 ou posterior; não devem ser importados do Excel® ou Powerpoint® e devem:

- Ter uma legenda e um título;
- Seja auto-explicável;
- Ter os algarismos significativos definidos segundo critério estatístico considerando os algarismos significativos no desvio padrão;
- Ser usado com parcimônia para garantir consistência visual e que o texto seja fácil de ler;
- Mostrar dados que não são mostrados nos gráficos;
- Ter o formato mais simples possível; não é permitido o uso de sombras, cores ou linhas verticais e diagonais;
- Ter apenas letras minúsculas sobrescritas indicando notas de rodapé (abreviaturas, unidades, etc). As colunas devem ser indicadas primeiro, depois as linhas, e esta mesma ordem deve ser seguida para as notas de rodapé.

Nomes proprietários

Devem ser especificadas as matérias-primas, equipamentos para fins especiais e softwares de computador utilizados na pesquisa (marca-fabricante, modelo, cidade e país de origem).

Unidades de medida

- Utilizar unidades do SI (Sistema Internacional de Unidades);
- As temperaturas devem ser expressas em graus Celsius (°C).

Referências

Citações no texto

As referências bibliográficas inseridas no texto devem ser feitas de acordo com o sistema "Autor/Data". Por exemplo, citação contendo um autor: Sayers (1970) ou (Sayers, 1970); com dois autores: Moraes & Furuie (2010) ou (Moraes & Furuie, 2010); citações com mais de dois autores devem apresentar a menção do primeiro autor seguida da expressão "et al.". Quando a citação se referir a uma instituição, seu

81

nome deve ser apresentado por extenso.

Lista de referência

A Revista Food Science and Technology (CTA) adota o estilo de citações e referências bibliográficas da American Psychological Association - APA. A política completa e os tutoriais podem ser verificados em http://www.apastyle.org .

A lista de referências deve ser preparada primeiro alfabeticamente e, se necessário. cronologicamente. Referências múltiplas do mesmo autor no mesmo ano devem ser identificadas pelas letras 'a', 'b', 'c', etc. colocadas após o ano de publicação.

Artigos em preparação ou submetidos para revisão não devem ser incluídos nas referências. Os nomes de todos os autores devem ser listados nas referências; portanto, o uso da expressão 'et al.' não é permitido. Conforme determinação da sbCTA, artigos aceitos cujas referências bibliográficas não estejam de acordo com as normas da Revista NÃO SERÃO PUBLICADOS até que as normas sejam atendidas.

Exemplos de estilo para referências:

Livros

Baccan, N., Aleixo, LM, Stein, E., & Godinho, OES (1995). Introdução à semimicroanálise qualitativa (6. ed.). Campinas: EduCamp. Universidade Estadual de Campinas - UNICAMP. (2006). Tabela brasileira de composição de alimentos - TACO (versão 2, 2. ed.). Campinas: UNICAMP/NEPA.

Capítulo de livro Sgarbieri, VC (1987). Composição e valor nutritivo do feijão Phaseolus vulgaris L. In EA Bulisani (Ed.), Feijão: fatores de produção e qualidade (cap. 5; pp. 257-326). Campinas: Fundação Cargill.

Artigos de periódicos Versantvoort, CH, Oomen, AG, Van de Kamp, E., Rompelberg, CJ e Sips, AJ (2005). Aplicabilidade de um modelo de digestão in vitro na avaliação da bioacessibilidade de micotoxinas de alimentos. Food and Chemical Toxicology, 43 (1), 31-40.

Sillick, TJ, & Schutte, NS (2006). A inteligência emocional e a auto-estima medeiam entre o amor parental precoce percebido e a felicidade adulta. E-Journal of Applied Psychology, 2 (2), 38-48. Recuperado de http://ojs.lib.swin.edu.au/index.php/ejap

Trabalho eletrônico (e-work) Richardson, ML (2000). Abordagens para diagnóstico diferencial em imagem musculoesquelética (versão 2.0). Seattle: Escola de Medicina da Universidade de Washington. Obtido em http://www.rad.washington.edu/mskbook/index.html

Legislação

Brasil, Ministério da Educação e Cultura. (2010). Institui a Política Nacional de Resíduos Sólidos; altera a Lei nº 9.605, de 12 de fevereiro de 1998; e dá outras providências (Lei nº 12.305, de 2 de agosto de 2010). Diário Oficial da República Federativa do Brasil.

Teses Dissertações е Fazio, MLS (2006). Qualidade microbiológica e ocorrência de leveduras em polpas congeladas de frutas (Dissertação de mestrado). Universidade Estadual Paulista, São José do Rio Preto.

Artigos previamente apresentados em conferências científicas Sutopo, W., Nur Bahagia, S., Cakravastia, A., & Arisamadhi, TMA (2008). Um Modelo de Estoque Regulador para Estabilização de Preços de Commodities em Tempo Limitado de Fornecimento e Consumo Contínuo. Nos *Anais da 9^a Conferência de Sistemas de Gerenciamento e Engenharia Industrial da Ásia-Pacífico* (APIEMS), Bali, Indonésia.

Formato de arquivos

O texto principal do manuscrito deve ser submetido da seguinte forma:

Manuscrito.doc:

- formato Microsoft Word® 2007 ou posterior;
- Fonte: Times New Roman, Arial ou Tahoma tamanho 12;
- Espaçamento duplo entre linhas;
- Figuras, tabelas, tabelas, equações e respectivas legendas devem ser incorporadas ao texto na posição preferida pelo autor;
- O arquivo não pode exceder 16 páginas, além da lista de referências bibliográficas
- As linhas e páginas devem ser numeradas sequencialmente;
- A folha de rosto com o nome dos autores e instituições deve ser apresentada em arquivo separado
- O manuscrito deve ser nomeado.

Depois de verificar o estilo do formato e criar os arquivos de acordo com as c prossiga para a submissão on-line usando o On-line (consulte abaixo).

Link: http://mc04.manuscriptcentral.com/cta-scielo

Taxa de publicação

A Food Science and Technology (CTA) cobrará uma taxa de publicação para os artigos aceitos de acordo com os seguintes critérios:

- USD 300,00 De autores não associados ao sbCTA;
- USD 250,00 Se pelo menos um autor for membro do sbCTA e for remunerado com anuidade;
- USD 200,00 Se pelo menos dois autores forem sócios da sbCTA e estiverem empatados com a anuidade;
- USD 750,00 Autores de outros países

O processo de criação do artigo aceito inicia-se somente após o pagamento da taxa de publicação.

Revisão da Língua Inglesa

Os trabalhos devem ser enviados em inglês, acompanhados de carta atestando sua edição, assinada por especialista na língua inglesa (nativo ou não nativo). Toda edição em inglês deve ser acompanhada de uma carta detalhando os ajustes feitos no documento original.

Antes da submissão online, o autor correspondente deverá preencher e assinar o Termo de Adesão e Cessão de Direitos de Reprodução Gráfica.

https://www.sbcta.org.br/downloads/Terms-of-Agreement-and-Submitting-Rights.pdf

Envie este formulário por e-mail para o Conselho Editorial da sbCTA para <u>publicacoes@sbcta.org.br</u> ou +55 19 32410527. O processo de avaliação não terá início até que o Termo de Acordo e Cessão de Direitos de Reprodução Gráfica seja enviado e recebido.

Contato

Sociedade Brasileira de Ciência e Tecnologia de Alimentos / SBCTA Av. Prof. Brasil 2880 – 13001-970 Campinas - SP, Brasil - Caixa Postal: 271 Fone/Fax: +55 (19) 3241-0527 – Fone: +55 (19) 3241-5793 e-mail: publicacoes@sbcta.org.br