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GENERAL ABSTRACT  
INTRODUCTION 

Alicyclobacillus spp. are Gram-positive, spore-forming bacillus with the ability to 

adhere to surfaces and form biofilms, associated with the deterioration of acidic 

beverages such as orange juice. There are more than 25 species identified 

(Sokołowska et al., 2020), among them A. acidoterrestris, which is capable of 

producing guaiacol, which is responsible for the astringent taste in contaminated 

juices. This microorganism has been used as a quality parameter in the production 

of concentrated orange juice; therefore, it is necessary to search for alternatives 

for its control, mainly in Brazil, where the production and exportation of juice is 

of great economic importance. In this sense, the improvement of studies on its 

development on different surfaces is justified, in addition to the association of 

encapsulation techniques of natural compounds, development of nanoparticles, in 

order to improve its stability and potentiate its antibacterial effects. 

GOALS 

The objectives of this work were: evaluate the interference of the initial microbial 

load on the biofilm formation of Alicyclobacillus acidoterrestris on the surfaces 

of AISI 304 stainless steel and food grade natural rubber under two temperature 

conditions, 28 °C and 45 °C, as well as the spore load in both conditions. And 

evaluate the use of nano encapsulated curcumin as an antimicrobial against 

different strains of Alicyclobacillus spp. and other pathogenic bacteria, in addition 

to analyzing their physical characteristics, encapsulation efficiency, curcumin 

bioactive properties and toxicity; and as proof of concept the interference in the 

properties of orange juice, such as pH, color and °Brix. 

MATERIAL AND METHODS 

The strain A.acidoterrestris (CBMAI 0244T) (DSMZ 3922, Deutsche Sammlung 

von Mikroorganismen und Zellkulturen, Germany) was used for biofilm 

formation; the surfaces used were AISI 304 stainless steel and food grade natural 

rubber, both measuring 8mm x 8mm x 3mm. And the concentrated orange juice 

(66 °Brix) was reconstituted to 11 °Brix with sterile water. 

Microbial concentrates (2 log CFU/mL and 5 log CFU/mL) were prepared at two 

incubation temperatures (28 and 45 °C) in reconstituted juice, and confirmed by 

control in BAT broth. Biofilm formation and evaluation were carried out at times 

0, 4, 8, 24, 48 and 72 hours, taking into account the cleaning times of industrial 



equipment; and at 28 and 45 °C, simulating the processing temperature and the 

ideal temperature for growth of the microorganism. To analyze the results, 

statistics were used using the Tukey test with a significance level of p<0.05. 

Were also used strains of Alicyclobacillus acidoterrestris (CBMAI 0244T), A. 

herbarius (CBMAI 0246T), A. acidocaldarius subsp. rittmanni (CBMAI 0245T), 

A. sendaiensis (KCTC 3843), A. hesperidum (CBMAI 0298T), and A. 

acidocaldarius (CBMAI 0299T), in addition to Salmonella enterica serovar 

Enteritidis (ATCC 13076) and Staphylococcus aureus (ATCC 25923). Curcumin 

and PVP purchased from Sigma-Aldrich, and orange juice concentrate donated by 

Louis Dreyfus (LDC). Bacterial and spore suspensions were prepared with their 

specific growth media. Curcumin nanoparticles with PVP were obtained by solid 

dispersion, and characterized by FTIR, MET and DSC, in addition to evaluating 

their cytotoxicity and antioxidant capacity. The determination of the minimum 

inhibitory concentration (MIC) was carried out, as well as the minimum 

bactericidal concentration (MBC), in addition to the incorporation of the 

nanoparticles in the orange juice, with verification of their interference in pH, 

color and °Brix. The results were treated by ANOVA statistical analysis and 

Tukey's test using the Statistica 7.0 software. 

RESULTS AND DISCUSSION 

Regarding the results of biofilm formation, the lowest microbial load led to biofilm 

formation on stainless steel after 48 hours of contact at 28 °C and after 24 hours 

at 45 °C, while in rubber the highest formation was observed after 48 hours. 

contact at both temperatures. The low initial microbial load demonstrated low 

sporulation efficacy. Regarding the higher microbial load, biofilm formation was 

observed on the steel after 4 hours of contact at 28 °C and 45 °C; and in rubber 

such formation was observed after 8 hours of contact at 28 °C and 4 hours at 45 

°C. Thus, there was a statistical difference between the temperatures, on the 

stainless-steel surface, in the two concentrations evaluated; for the rubber surface 

there was no such statistical difference. 

Regarding the results of curcumin nanoparticles, its efficiency was proven, since 

the amounts needed to express its antibacterial activity were smaller than in its 

free form, against the deteriorating and pathogenic bacteria tested, such as a MIC 

of 125 μg/mL in Staphylococcus aureus and 62.5 μg/mL in A. acidoterrestris, in 

addition to the Fourier transform infrared (FTIR) and differential scanning 



calorimetry (DSC) analyzes prove the effectiveness of the encapsulation. The 

images obtained by transmission electron microscopy (TEM) showed a wide range 

of nanoparticle sizes. The antioxidant activity assay confirmed the bioactive 

properties of encapsulated curcumin and also its non-cytotoxicity against four 

carcinoma and two non-tumor cell lines. The stability of the juice added to the 

nanoparticles was confirmed by maintaining their pH, color and ºBrix after 3 days 

of storage at 8 °C, refrigerated temperature. 

CONCLUSIONS 

Greater biofilm formation was observed with the highest initial microbial load on 

the two contact surfaces analyzed, steel and rubber, at both temperatures, but when 

the contact time was taken into account, there was greater formation on the rubber 

surface. As the formation of biofilm has already been observed after 4 hours of 

contact, it is necessary to perform hygiene procedures frequently. Regarding the 

spores, they showed greater ease of adhesion on the stainless-steel surface, with a 

high presence from the highest initial concentration of microorganisms. 

Regarding the use of curcumin nanoparticles as antimicrobial agents, the result 

was satisfactory, as it proved their antimicrobial and antibacterial effect against 

the tested strains; in addition to the stability of the nanoparticle being confirmed 

by the tests performed. 

 

Keywords: Alicyclobacillus, spores, orange juice, biofilm, curcumin, 

nanoparticles. 



RESUMO GERAL 

INTRODUÇÃO 

Alicyclobacillus spp. são bacilos Gram-positivos, formadores de esporos, com 

capacidade de se aderirem a superfícies e formar biofilmes, associados a deterioração de 

bebidas ácidas, como suco de laranja. Há mais de 25 espécies identificadas (Sokołowska 

et al., 2020), dentre elas o A. acidoterrestris, que é capaz de produzir guaiacol, o qual é 

responsável pelo sabor adstringente em sucos contaminados. Este micro-organismo vem 

sendo utilizado como parâmetro de qualidade na produção de sucos de laranja 

concentrados; sendo assim necessária a busca por alternativas para seu controle, 

principalmente no Brasil, onde a produção e a exportação de suco são de grande 

relevância econômica. Nesse sentido justifica-se o aprimoramento de estudos sobre seu 

desenvolvimento em diferentes superfícies, além da associação de técnicas de 

encapsulamento de compostos naturais, desenvolvimento de nanopartículas, afim de 

melhorar sua estabilidade e potencializar seus efeitos antibacterianos.  

OBJETIVOS 

Os objetivos deste trabalho foram: avaliar a interferência da carga microbiana 

inicial na formação de biofilme de Alicyclobacillus acidoterrestris nas superfícies de aço 

inoxidável AISI 304 e borracha natural de qualidade alimentar em duas condições de 

temperatura, 28 °C e 45 °C, bem como a carga de esporos em ambas condições. E avaliar 

o uso da curcumina nano encapsulada como antimicrobiano frente a diferentes cepas de 

Alicyclobacillus spp. e outras bactérias patogênicas, além de analisar suas características 

físicas, eficiência do encapsulamento, propriedades bioativas da curcumina e toxicidade; 

e ainda como prova de conceito a interferência nas propriedades do suco de laranja, como 

pH, cor e °Brix.  

MATERIAL E MÉTODOS 

Foi utilizada a cepa A.acidoterrestris (CBMAI 0244T) (DSMZ 3922, Deutsche 

Sammlung von Mikroorganismen und Zellkulturen, Germany) para formação do 

biofilme; as superfícies utilizadas foram o aço inoxidável AISI 304 e a borracha natural 

de qualidade alimentar, ambos medindo 8mm x 8mm x 3mm. E o suco de laranja 

concentrado (66 °Brix) foi reconstituído até 11 °Brix com água estéril. 

Os concentrados microbianos (2 log CFU/mL e 5 log CFU/mL) foram preparados 

em duas temperaturas de incubação (28 e 45 °C) em suco reconstituído, e confirmados 

através do controle em caldo BAT. Procedeu-se com a formação e avaliação do biofilme 

nos tempos 0, 4, 8, 24, 48 e 72 horas, levando em consideração os tempos de limpeza dos 



equipamentos industriais; e em 28 e 45 °C, simulando a temperatura de processamento e 

a temperatura ideal de crescimento do microrganismo. Para análise dos resultados 

utilizou-se estatística através do teste de Tukey com nível de significância p<0,05. 

Também foram utilizadas as cepas de Alicyclobacillus acidoterrestris (CBMAI 

0244T), A. herbarius (CBMAI 0246T), A. acidocaldarius subsp. rittmanni (CBMAI 

0245T), A. sendaiensis (KCTC 3843), A. hesperidum (CBMAI 0298T), and A. 

acidocaldarius (CBMAI 0299T), além de Salmonella enterica sorovar Enteritidis (ATCC 

13076) e Staphylococcus aureus (ATCC 25923). A curcumina e PVP adquiridos da 

Sigma-Aldrich, e o suco de laranja concentrado doado pela Louis Dreyfus (LDC). As 

suspensões bacterianas e de esporos foram preparadas com seus meios de crescimento 

específicos. As nanopartículas de curcumina com PVP foram obtidas por dispersão 

sólida, e caracterizadas por FTIR, MET e DSC, além da avaliação de sua citotoxicidade 

e capacidade antioxidante. Realizou-se a determinação da concentração inibitória mínima 

(CIM), bem como a concentração bactericida mínima (CBM), além da incorporação das 

nanopartículas no suco de laranja, com verificação da sua interferência no pH, cor e °Brix. 

Os resultados foram tratados por análise estatística ANOVA e teste de Tukey através do 

software Statistica 7.0. 

RESULTADOS E DISCUSSÃO 

Sobre os resultados de formação de biofilme, a menor carga microbiana levou a 

formação de biofilme no aço inoxidável após 48 horas de contato a 28 °C e após 24 horas 

a 45 °C, enquanto que na borracha a maior formação foi observada após 48 horas de 

contato em ambas temperaturas. A baixa carga microbiana inicial demonstrou baixa 

eficácia de esporulação. Com relação a maior carga microbiana foi observada formação 

de biofilme no aço após 4 horas de contato a 28 °C e 45 °C; e na borracha tal formação 

foi observada após 8 horas de contato a 28 °C e 4 horas a 45 °C. Assim, houve diferença 

estatística entre as temperaturas, na superfície de aço inoxidável, nas duas concentrações 

avaliadas; já para a superfície de borracha não houve tal diferença estatística. 

Com relação aos resultados das nanopartículas de curcumina, sua eficiência foi 

comprovada, uma vez que as quantidades necessárias para expressar sua atividade 

antibacteriana foram menores que em sua forma livre, frente as bactérias deteriorantes e 

patogênicas testadas, como CIM de 125 μg/mL em Staphylococcus aureus e 62,5 μg/mL 

em A. acidoterrestris, além das análises de infravermelho por transformada de Fourier 

(FTIR) e calorimetria diferencial de varredura (DSC) comprovarem a eficácia da 

encapsulação. As imagens obtidas por microscopia eletrônica de transmissão (MET) 



apresentaram uma vasta gama de tamanhos de nanopartículas. O ensaio de atividade 

antioxidante confirmou as propriedades bioativas da curcumina encapsulada e também 

sua não citotoxicidade frente a quatro linhagens de células de carcinoma e duas não 

tumorais. A estabilidade do suco adicionado das nanopartículas foi confirmada através da 

manutenção de seu pH, cor e ºBrix após 3 dias de armazenamento a 8 °C, temperatura de 

refrigeração. 

CONCLUSÕES    

Observou-se maior formação de biofilme com a maior carga microbiana inicial 

nas duas superfícies de contato analisadas, aço e borracha, em ambas as temperaturas, 

porém quando se levou em consideração o tempo de contato houve maior formação na 

superfície de borracha. Como a formação de biofilme já foi observada após 4 horas de 

contato, faz-se necessária a realização dos procedimentos de higiene frequentemente. 

Com relação aos esporos, estes apresentaram maior facilidade de adesão na superfície de 

aço inoxidável, com presença elevada a partir da maior concentração inicial de micro-

organismos. 

Com relação a utilização das nanopartículas de curcumina como agentes 

antimicrobianos, o resultado foi satisfatório, pois comprovou seu efeito antimicrobiano e 

antibactericida frente as cepas testadas; além da estabilidade da nanopartícula ter sido 

confirmada pelos ensaios realizados.  

 

Palavras-chave: Alicyclobacillus, esporos, suco de laranja, biofilme, curcumina, 

nanopartículas. 
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INTRODUCTION

Brazil is currently the world’s leading 
producer and exporter of concentrated orange juice. 
Concentrated orange juice has low water activity (0.80 
- 0.83), low pH (3.5 to 4.0), a high concentration of 
soluble solids (65 °Brix), high viscosity, and low redox 
potential, which together with the heat treatment during 
the concentration process inhibit the multiplication 
of many spoilage and pathogenic microorganisms. 
However,  bacteria of genus Alicyclobacillus spp. 
survive these environments and caused an unpleasant 
taste and odour in the juice, described as antiseptic or 
disinfectant due to the formation of 2,4-dibromophenol 
and 2-methoxyphenol (guaiacol) compounds, 

respectively (Orr et al., 2000; Smit et al., 2011; 
Steyn et al., 2011).

Alicyclobacillus is a genus of spore-forming 
bacteria, Gram-positive that have already been found 
in soil, organic compost, manure, fruit surface, and 
acidic beverages (Steyn et al., 2011; Tianlii et 
al., 2014). The contamination of juices and processing 
environment with Alicyclobacillus spp. may occur 
during post-harvest without adequate cleaning of 
the fruits. This microorganism may still be present 
in the food industry in the form of biofilms (Anjos 
et al., 2013). Biofilms are considered a complex and 
structured community of microorganisms, surrounded 
by an extracellular matrix of polysaccharides, 
adhered to each other and/or to a surface or interface 

1Programa de Pós-graduação em Ciência de Alimentos, Universidade Estadual de Maringá (UEM), Maringá, PR, Brasil.
2Docente do curso de Nutrição do Centro Universitário Ingá (UNINGÁ), Maringá, PR, Brasil.
3Departamento de Análises Clínicas e Biomedicina Universidade Estadual de Maringá (UEM), Maringá, PR, Brasil.
4Departamento de Ciências Básicas da Saúde, Universidade Estadual de Maringá (UEM), 87020-900, Maringá, PR, Brasil. E-mail: 
baafilho@uem.br. *Corresponding author.

ABSTRACT: The objective of this study was to evaluate the effect of the initial microbial load, temperature and contact time on the biofilm 
formation of Alicyclobacillus acidoterrestris on stainless steel and natural food-grade rubber using orange juice as culture medium. The low 
initial load of A. acidoterrestris (2 log CFU/mL) led to biofilm formation on the stainless steel surface after 48 h of contact at 28 ºC and after 
24 h at 45 ºC, and on natural food-grade rubber surface after 48 h of contact at both temperatures. The high initial microbial load (5 log CFU/
mL) led to biofilm formation on stainless steel after 4 h of contact at 28 °C and 45 °C, while biofilm was formed on natural food-grade rubber 
after 8 h of contact at 28 °C and 4 h at 45 °C. The microbial load also affected the presence of spores in biofilm, which was observed on both 
surfaces only at high initial loads of A. acidoterrestris. 
Key words: concentrated orange juice, stainless steel, natural food-grade rubber, spores, biofilm.

RESUMO: O objetivo deste estudo foi avaliar o efeito da carga microbiana inicial, temperatura e tempo de contato na formação de biofilme 
de Alicyclobacillus acidoterrestris em aço inoxidável e borracha natural de qualidade alimentar utilizando suco de laranja como meio de 
cultura. A baixa carga inicial de A. acidoterrestris (2 log UFC/mL) levou à formação de biofilme na superfície do aço inoxidável após 48 h de 
contato a 28 ºC e após 24 h a 45 ºC, e na superfície natural de borracha de qualidade alimentar após 48 h de contato nas duas temperaturas. A 
alta carga microbiana inicial (5 log UFC/mL) levou à formação de biofilme em aço inoxidável após 4 h de contato a 28 °C e 45 °C, enquanto 
o biofilme foi formado em borracha natural de qualidade alimentar após 8 h de contato a 28 °C e 4 h a 45 °C. A carga microbiana também 
afetou a presença de esporos no biofilme, o que foi observado em ambas as superfícies apenas com altas cargas iniciais de A. acidoterrestris.
Palavras-chave: suco concentrado de laranja, aço inoxidável, borracha natural de qualidade alimentar, esporos, biofilme. 
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(Costerton et al., 1995). These biofilms increase 
the cell’s resistance to environmental stresses, reduce 
the efficiency of sanitizers, and bring economic 
losses to the food industry, as it can be a focus of food 
contamination (Simões et al., 2010).

The objective of this study was to evaluate 
the effect of the initial inoculated microbial load (low 
- 2 log, or high - 5 log), processing temperatures (28 
°C and 45 °C) and contact times (0, 4, 8, 24, 48, and 
72 h) on the biofilm formation of A. acidoterrestris on 
stainless steel and natural food-grade rubber surfaces 
using orange juice as culture medium.

MATERIALS   AND   METHODS

Materials
A. acidoterrestris CBMAI 0244T 

strain (DSMZ 3922, Deutsche Sammlung von 
Mikroorganismen und Zellkulturen, Germany) was 
used for the biofilm formation. The strain was stored 
in 30% glycerol at -20 °C and activated in 3 mL of 
BAT broth (Bacillus acidoterrestris broth) at 45 °C 
for 24 h.

The biofilm formation was evaluated in 
AISI 304#4 stainless steel coupon (8 mm x 8 mm 
x 1 mm) and a natural food-grade rubber surface 
(8 mm x 8 mm x 3 mm), non-toxic, food-grade 
rubber, normally utilized as a fruit conveyor belt 
in food industries. Before each assay, the surfaces 
were rinsed with neutral detergent and distilled 
water, immersed in 70% (v/v) ethanol for 1 hour at 
room temperature, rinsed again in distilled water, 
placed in microtubes, and sterilized at 121 °C for 15 
(Fernandes et al., 2014).

Concentrated orange juice (66 ºBrix) was 
reconstituted to 11 °Brix (aw 0.96, pH 4.0) using 
sterile deionized water. 

Absence and control of microbial load
The absence of Alicyclobacillus spp. 

vegetative cells and spores in the samples was 
previously investigated. In each sterile microtube were 
added one coupon, 900 uL reconstituted orange juice 
and 100 uL diluted culture. Two experiments were 
carried out: i) addition of 100 uL A. acidoterrestris 
strains at a load of 2 log CFU/mL, and ii) addition 
of 100 uL A. acidoterrestris strains at 5 log CFU/
mL. Subsequently, the microtubes were incubated 
at 28 and 45 °C. The analyses were performed after 
0, 4, 8, 24, 48, and 72 h. After each inoculation, a 
control of A. acidoterrestris cell count on BAT agar 
was performed to confirm the initial microbial load. 
Plates were incubated at 45 °C for 24 h.

Biofilm formation
The biofilm formation was assessed by the 

plate counting technique. At each time (0, 4, 8, 24, 48, 
72 h) and contact temperature (28 ºC and 45 ºC), the 
stainless steel and natural food-grade rubber coupons 
were removed from the orange juice and transferred 
separately to microtubes containing 1.0 mL of 0.85% 
saline solution, remaining immersed for 1 min at rest 
to remove the planktonic cells. Then, each vial was 
immersed in 1.0 mL of 0.85% saline solution and 
subjected to ultrasound for 5 min to remove the sessile 
cells (Anjos et al., 2013). For the spore counts, the 
coupons were subsequently subjected to a heat shock 
of 80 °C for 10 min, followed by plating on BAT agar 
and incubation at 45 °C for 24 h (Fernandes et 
al., 2014). The count was performed on BAT agar by 
drop plate method (Herigstad et al., 2001). On 
each BAT agar plate was added three drop (20 uL 
each) of each dilution. The average of the counts was 
applied according to Swanson et al., 1992. Each 
experiment was repeated three times.

Statistical analyses 
All investigated variables were subjected 

to an analysis of variance (ANOVA). For each 
temperature, the contact times were compared using 
Tukey’s test (p<0.05). The results of vegetative cells 
counts were compared between the temperatures of 
28 ºC and 45 °C using T-Student test (p<0.05). The 
same test also has been used to compare results of 
spore counts between temperatures of 28 and 45 °C. 
In all cases, the statistic tests were applied separately 
for planktonic cells orange juice, sessile cells stainless 
steel, and sessile cells natural food-grade rubber, for 
each time. Statistical analysis was performed using the 
SISVAR program version 5.3 (Ferreira, 2008).

RESULTS

Tables 1 and 2 show the results of  low 
and high initial concentration, respectively, the A. 
acidoterrestris planktonic cells counts (log CFU/mL) 
in orange juice, and the sessile cells counts (log CFU/
cm2) on stainless steel and natural food-grade rubber 
surfaces as a function of the time and temperature.

The low initial load of A. acidoterrestris 
(Table 1) led to biofilm formation on the stainless 
steel surface after 48 h of contact at 28 ºC and after 
24 h at 45 ºC. The highest biofilm formation (P<0.05) 
on stainless steel was observed after 72 h at 28 °C and 
24 h at 45 ºC. After 72 h at 45 ºC, a reduction of the A. 
acidoterrestris counts of more than one log cycle was 
observed. On the natural food-grade rubber surface, 
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the highest biofilm formation of A. acidoterrestris 
(P<0.05) occurred after 48 h of contact at 28 ºC and 45 
ºC, with a reduction after 72 h, at both temperatures. 

The low initial A. acidoterrestris 
population led to low sporulation efficiency of the 
microorganisms over time at 28 and 45 ºC (Table 1). 
Therefore, the presence of spores in the biofilm was 
not observed (count below the detection limit: <3 
log CFU/cm2).

At high initial A. acidoterrestris population 
(Table 2) led to the biofilm formation on stainless 
steel after 4 h of contact at both 28 °C and 45 °C. The 
highest biofilm formation was observed after 24 h of 
contact at 28 °C, although scores were not statistically 
different (P ≥0.05) over time. At 45 ºC after 8 h of 
contact the highest biofilm formation was observed 
(5.30 log CFU/cm2, P<0.05). The biofilm formation 
was also observed on the natural food-grade rubber 
surface after a few hours, within 8 h and 4 h for 28 
ºC and 45 ºC, respectively. On the natural food-grade 
rubber surface, the highest  biofilm formation was 
observed at 28 °C after 72 h of contact, with counts 
of 4.56 log CFU/cm2 (P<0.05). At 45 °C the highest 
count was after 72 h, however, there was no significant 
difference with the other times of contact (P ≥0.05).

At high initial A. acidoterrestris population 
(5 log CFU/mL), the planktonic cells counts in 
orange juice were higher after 4 h at both 28 °C and 
45 °C and over time and the biofilm formation began 
after a few hours of contact with both stainless steel 
and natural food-grade rubber surfaces (Table 2). In 

addition, at high initial A. acidoterrestris populations, 
the sporulation in orange juice was observed after 
4 h for the two temperatures under study, thus 
spore formation was detected in both biofilms from 
stainless steel and natural food-grade rubber surfaces. 
However, the spore count on the stainless steel surface 
decreased (P<0.05) after 24 h of contact.

In the present study we verified statistical 
difference between the temperatures tested. For 
example, on the stainless steel surface at low and high 
concentration at 24 h and 8 h contact, respectively, 
the vegetative  cell counts of A. acidoterrestris were 
higher at 45 ºC than at 28 °C (P<0.05). For the natural 
food-grade rubber surface, at high concentrations, 
there was no statistical difference between the 
evaluated  temperatures (P≥0.05).

The low initial microbial load inoculated 
in the orange juice at 28 ºC allowed the adaptation 
of the bacteria with slow multiplication, thus taking 
more time for the biofilm formation and high 
microbial counts. This fact was confirmed by the 
planktonic cells counts in orange juice over time 
(Table 1). The initial (4 and 8 h) planktonic cells 
counts were below 3 log CFU/mL, while the high 
planktonic cells counts (above 4-5 log CFU/mL, 
P<0.05) were only observed after 48 h, precisely 
when the biofilm was formed. At 45 ºC, high plankton 
cell counts were  observed after 24 h (P<0.05), when 
biofilm formation had already occurred.

Stainless steel surface was more propitious 
to biofilm of A. acidoterrestris formation at low 

Table 1 - Mean Alicyclobacillus acidoterrestris count ± standard deviation (SD) of planktonic cells (log CFU/mL) and sessile cells (log CFU/cm2) at initial 
inoculated load of 2 log CFU/mL. 

 

Time 
(h) ---------------Planktonic cells Orange juice------------ --------------Sessile cells Stainless steel----------- ----------------Sessile cells Rubber--------------- 

 ------------28 ºC------------ -----------45 ºC---------- ----------28 ºC---------- -----------45 ºC---------- ----------28 ºC--------- ---------45 ºC---------- 

 Vegetative 
cells Spores Vegetative 

cells Spores Vegetative 
cells Spores Vegetative 

cells Spores Vegetative 
cells Spores Vegetative 

cells Spores 

4 2.64±0.01cA <1.7*b 3.29±1.04bA <1.7b <3** c <3 <3c <3 <3b <3 <3b <3 
8 2.65±0.00cB <1.7b 4.20±0.00bA <1.7b <3c <3 <3c <3 <3b <3 <3b <3 

24 4.17±0.19bA <1.7b 4.94±1.77aA <1.7b <3cB <3 4.88±0.84aA <3 <3b <3 <3b <3 

48 5.50±0.76aA 2.7±0.00aA 5.09±0.02aA 3.00±0.
00aA 3.73±0.39bA <3 4.03±1.00a,bA <3 3.72±0.08aB <3 4.73±0.01aA <3 

72 5.40±0.69aA 2.7±0.00aA 5.18±0.12aA 3.48±0.
00aA 4.39±0.20aA <3 3.44±0.04bA <3 <3bB <3 3.98±0.47bA <3 

 
*Detection limit = 1.7 log CFU/mLfor planktonic cells. SD not established.**Detection limit = 3 log CFU/cm2 for sessile cells. SD not established. 
a,b,cMeans in the same column followed by the same lowercase letter are not significantly different by the Tukey's test (P≥0.05). 
A,BMeans in the same row followed by the same uppercase letter (comparing 28 ºC x 45 ºC for vegetative cells and comparing 28 ºC x 45 ºC for spores) are 
not significantly different by the T-Student test (P≥0.05). The statistic test was applied separately for planktonic cells orange juice, sessile cells stainless steel 
and sessile cells rubber. 
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microbial load, however, at high microbial load, after 
72 h of contact, natural food-grade rubber surface 
was more propitious. 

The high initial load (5 log CFU/mL) 
of A. acidoterrestris led to biofilm formation 
on the different surfaces more rapidly than low 
initial load (2 log CFU/mL). In this case, after 
4 h of contact, biofilm formation has occurred, 
suggesting that hygiene procedures must be 
performed frequently. The microbial load can 
also affect the presence of spores in the biofilm 
formed, which was observed on both surfaces 
only at high initial loads of A. acidoterrestris.

DISCUSSION 

The temperatures of 28 °C and 45 °C were 
selected in this study to represent the environment  
processing temperature and the ideal temperature of A. 
acidoterrestris growth, respectively (Smit et al., 2011). 
The time interval was selected based on the equipment 
cleaning schedule of the orange juice industry.

Probably, the reduction in the biofilm count 
after 72 h on the food-grade rubber surface was due to 
the detachment of the biofilm cells, as the planktonic 
cell count in the orange juice remained high after 72 
h. This is worrisome because detachment can lead to 
food contamination or colonization of other regions, 
resulting in new biofilms (Simões et al., 2010).

Among the two inoculated microbial 
load, 5 log CFU/mL and 2 log CFU/mL, the highest 
biofilm formation of A. acidoterrestris was observed 
at higher microbial load, for both surfaces. Therefore, 
the higher the microorganism population, the greater 

the biofilm formation. Peña et al. (2014) found 
that the inoculation of 6 log CFU/mL of Bacillus 
cereus in milk led to a higher biofilm formation when 
compared with the inoculation using a low microbial  
population (3 log CFU/mL), demonstrating the effect 
of the contamination level on the biofilm formation.

Regardless of the microbial species or 
surface analysed, the adhesion process may occur with 
maximum intensity at the optimum temperature growth 
range (Meira et al., 2012). Alicyclobacillus spp. can 
grow from 20 to 70 °C, with the optimum temperature 
ranging from 42 to 60 °C (Smit et al., 2011).

It is worth mentioning that the spores 
adhere moreeasily to the stainless steel surface, due 
to their hydrophobic properties (Ryu & Beuchat, 
2005), and the adhered spores become even more 
resistant to the cleaning procedures. Then, under 
favourable environmental conditions, the spores 
can germinate in vegetative cells and continue the 
multiplication process (Elhariry, 2011), being 
able to recontaminate the processed juice.

The great majority of the equipment 
surfaces in the juice processing industry is stainless 
steel, although this surface is considered smooth, it 
can wear away over time, with cracks and grooves 
and corrosion points, which also facilitate adhesion of 
the microorganism and subsequent biofilm formation 
(Simões et al., 2010).

The natural food-grade rubber is a piece 
of the conveyor belts the fruits after the arrival at 
the factory. The rubber surface is usually affected 
by sanitizing procedures and, consequently, it 
wears away more easily, which favours the biofilm 
formation. In addition, rubber often has a porous and 

 

Table 2 - Mean Alicyclobacillus acidoterrestris counts ± SD of planktonic cells (log CFU/mL) and sessile cells (log CFU/cm2) at initial inoculated load of 5 log CFU/mL. 
 

Time (h) ------------------Planktonic cells Orange juice----------------- --------------------Sessile cells Stainless steel------------- --------------------Sessile cells Rubber------------------- 

 --------------28 ºC------------ -----------45 ºC------------ ------------28 ºC------------- -----------45 ºC------------- -----------28 ºC------------ -------------45 ºC---------- 
 Vegetative 

cells 
Spores Vegetative 

cells 
Spores Vegetative 

cells 
Spores Vegetative 

cells 
Spores Vegetative 

cells 
Spores Vegetative 

cells 
Spores 

4 5.40±1.06aB 3.59±0.02bB 6.35±0.08aA 4.45±0.
13aA 

3.30±0.17aA 3.05±0.12a 3.95±0.65bA <3*b <3cB <3b 4.13±1.52aA <3b 

8 6.12±0.30aA 4.45±0.13aA 5.91±0.57aA 4.38±0.
05aA 

3.69±0.04aB 3.59±1.00a

A 
5.30±0.14aA2 3.77±0.

80aA 
3.79±0.01bA <3b 4.10±0.32aA1 <3b 

24 5.71±0.56aA 4.68±0.42aA 5.49±0.30aA 4.58±0.
20aA 

4.29±0.02aA <3 3.89±0.40bA <3b 4.28±0.20a,bA <3b 4.37±0.18aA <3b 

48 5.93±0.27aA 5.16±0.06aA 5.71±0.06aA 4.25±0.
05aB 

4.27±0.00aA <3 4.10±0.44a,bA <3b 4.01±0.19a,bA 3.40±0.
25aA 

4.23±0.87aA 3.53±0.
48aA 

72 6.00±0.00aA 4.61±0.03aA 5.64±0.05aA 3.74±0.
39aB 

3.82±0.45aA <3 3.91±0.63bA <3b 4.76±1.13aA 3.61±0.
73aA 

4.60±0.02aA 3.71±0.
31aA 

 

*Detection limit = 3 log CFU/cm2 for sessile cells. SD not established. 
a,b,cMeans in the same column followed by the same lowercase letter are not significantly different by the Tukey's test (P≥0.05). 
A,BMeans in the same row followed by the same uppercase letter (comparing 28 ºC x 45 ºC for vegetative cells and comparing 28 ºC x 45 ºC for spores) are not significantly different by 
the T-Student test (P≥0.05). The statistic test was applied separately for planktonic cells orange juice, sessile cells stainless steel and sessile cells rubber. 
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spongy structure, which facilitates the adhesion of 
microorganisms with subsequent biofilm formation. 
Therefore, these characteristics of the rubber should 
be evaluated before its use in the food industry. To 
date, the literature lacks information on biofilm 
formation of A. acidoterrestris on rubber surfaces.

The biofilm formation of A. acidoterrestris 
in this study occurred at 28 ºC and 45 ºC. It is 
worth noting that both temperatures are used in the 
equipment during the processing of orange juice, 
thus the poor sanitation can contribute to the biofilm 
formation. Both surfaces were suitable for biofilm 
formation of A. acidoterrestris. However, over time 
of contact, a higher biofilm formation was observed at 
high microbial load on the natural food-grade rubber 
surface, and at low microbial load on the stainless 
steel surface.
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Tatiane Viana Dutra a, Jéssica Lima de Menezes a, Amanda Gouveia Mizuta a, 
Anielle de Oliveira a,b, Thaysa Fernandes Moya Moreira a,b, Lillian Barros c, Filipa Mandim c, 
Carla Pereira c, Odinei Hess Gonçalves b,c, Fernanda Vitória Leimann b,c, 
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A B S T R A C T   

Pathogenic and deteriorating bacteria are a great concern to food safety. In this sense, the present study eval
uated the fight against microbial contamination through the use of nanoparticles containing curcumin, in 
addition to analyzing the physical properties of these nanoparticles. Efficient curcumin encapsulation was 
determined by Fourier transform infrared spectra evaluation and differential scanning calorimetry. Transmission 
electron microscopy images showed irregular shaped nanoparticles with broad size distribution (20–250 nm). 
The antibacterial activity was considered satisfactory, since curcumin in the form of nanoparticles demonstrated 
antimicrobial and antibacterial activity superior to curcumin in its free form, against both pathogenic bacteria, 
such as Staphylococcus aureus (MIC 125 μg/mL), and deteriorates, such as Alicyclobacillus acidoterrestris (MIC 62.5 
μg/mL). Since curcumin nanoparticles may be consumed as a food additive, the bioactive properties of the 
nanoencapsulated curcumin were also evaluated in relation to antioxidant capacity (Thiobarbituric acid reactive 
substances (TBARS) and oxidative hemolysis inhibition assays) and cytotoxicity against four carcinoma cell lines, 
as well as two non-tumor cells. As a proof of concept, nanoparticles were incorporated in orange juice, with the 
juice maintaining satisfactory pH, ◦Brix, and color stability, during three days of storage (8 ◦C).   

1. Introduction 

The food production and consumption chains are increasingly con
cerned about the microbiological safety of food. There are several 
disinfection methods available and already implemented in the food 
industry; however, techniques that do not alter the organoleptic prop
erties of foods are still lacking (Spricigo et al., 2013). 

According to the World Health Organization, Salmonella spp. and 
Staphylococcus aureus are among the main bacteria that cause foodborne 
diseases (FBDs) (WHO, 2018). In addition to these, there are other sig
nificant microorganisms responsible for FBDs, such as species of Alicy
clobacillus, which are Gram-positive and thermoacidophilic bacteria. 

These bacteria are capable of multiplying in a wide range of pH 
(2.5–6.0) and temperature (25–60 ◦C), and some species can even form 
spores as a resistance mechanism. Alicyclobacillus spp. are associated 
with the deterioration of citrus juices, concentrates, teas, and tomato 
extracts due to inefficient pasteurization processes (Cai et al., 2019; 
Wang et al., 2018). Of the 22 species that comprise this genus, 
A. acidoterrestris is considered the most important deteriorate as it can 
produce by-products, such as guaiacol, which causes the astringent taste 
and odor in juices (Chang and Kang, 2004; Ciuffreda et al., 2015; Goto 
et al., 2002). 

Due to the characteristics of sporulation and biofilm formation, the 
industry seeks alternatives for the control of Alicyclobacillus spp. in food 
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processing. The main objective, in addition to combating the microor
ganism, is to maintain the product's sensory characteristics. As the 
conventional pasteurization process is not able to eliminate Alicycloba
cillus spp., alternatives have been investigated, including high hydro
static pressure, ultraviolet radiation, natural antimicrobials, pulsed 
electric fields, ultrasound, pulsed light, or a combination of these pro
cesses with mild thermal treatments (Tremarin et al., 2019). Another 
promising approach that can be evaluated is the use of natural extracts 
with antimicrobial properties (Bevilacqua et al., 2008). 

Some efforts have been made in the search for substances of natural 
origin with action against Alicyclobacillus spp., such as the use of papain 
and bromelain, which are proteolytic enzymes derived from papaya and 
pineapple, respectively (Anjos et al., 2016). Both enzymes were evalu
ated against strains of A. acidoterrestris, A. hesperidum, A. acidiphilus, 
A. cycloheptanicus, and A. acidocaldarius. The enzymes were reported to 
have effective inhibitory and bactericidal activity at low concentrations 
against all the strains except A. acidocaldarius. In another study, oregano 
(Origanum vulgare) essential oil was evaluated against the same strains, 
and was shown to efficiently control the growth of Alicyclobacillus spp. 
(Dutra et al., 2019). The authors highlighted the correlation between the 
good antioxidant activity of the compounds present in the essential oil, 
such as carvacrol acetate, and the antimicrobial activity of the natural 
product. Other natural extracts have also been studied against Alicy
clobacillus spp., such as rosemary extract (Piskernik et al., 2016), green 
tea kombucha (Mizuta et al., 2020), Piper peltatum and Piper marginatum 
extracts (Pascoli et al., 2018), and thymol (Cai et al., 2019). 

A largely studied natural antimicrobial compound is curcumin 
(diferuoyl methane), which is the major component within the phenolic 
compounds of Curcuma longa L. Curcumin has received considerable 
attention for its therapeutic properties, such as anti-inflammatory, 
anticancer, and antioxidant, as well as its antibacterial capacity (Gon
çalves et al., 2020). Curcumin is already used in the food industry as a 
stabilizing agent or natural colorant (Mangolim et al., 2014; Mahmood 
et al., 2015), however its applicability is limited due to its poor water 
solubility. The encapsulation of poorly water-soluble compounds is a 
viable solution to overcome this problem. Generally Recognized as Safe 
(GRAS) materials can be used as encapsulating agents, thus increasing 
the range of foodstuff to which curcumin could be applied. 

In view of the therapeutic potential of curcumin, Shah et al. (2018) 
evaluated the effects of nanoconjugates of curcumin and Ag (C-AgNPs) 
against skin cancer in patients. The authors reported better anti-cancer 
activity for the C-AgNPs conjugate (AgNO3, 10–3 M, mixed with 10–5 
M curcumin solution) than for the curcumin alone, suggesting its use as a 
chemotherapeutic agent for the treatment of cancer. 

Solid dispersion is one of the encapsulation strategies that can be 
applied to obtain a water-soluble product from a hydrophobic com
pound, such as curcumin. Solid dispersions can be achieved by spray 
drying, melt extrusion, wet milling, and dissolution techniques. In the 
dissolution approach, a solvent that is able to solubilize both, the com
pound of interest and the encapsulating agent (polymer), is used (mainly 
ethanol), together with a surfactant. This mixture is submitted to a 
shearing process (ultrasound, rotor-stator systems, etc.) that increases 
the interaction between the encapsulating agent (carrier) and the 
encapsulated compound by means of hydrogen bonding (Karavas et al., 
2006; Phunpee et al., 2018). The mixture may then be dried, forming a 
homogeneous amorphous solid solution, where the encapsulated com
pound and carrier are totally miscible and soluble. This approach is 
considered easier to apply and less expensive than other encapsulation 
procedures(Leimann et al., 2019). 

The encapsulation of curcumin using the dissolution approach of 
solid dispersion was applied by H. H. S. Almeida et al., 2018; M. Almeida 
et al., 2018. The encapsulating material used by the authors was poly
vinylpyrrolidone (PVP), while Tween 80 was used as a surfactant and 
sonication as means of promoting the interaction of the compounds. The 
antimicrobial action of the nanoparticles was investigated against 
Pseudomonas aeruginosa, Morganella morganii, Klebsiella pneumoniae 

ESBL (spectrum extended producer), Klebsiella pneumoniae, Escherichia 
coli, Escherichia coli ESBL, Listeria monocytogenes, Enterococcus faecalis, 
methicillin-resistant Staphylococcus aureus, and methicillin-sensitive 
Staphylococcus aureus. Results showed minimal inhibition concentra
tion (MIC) values between 0.5 and 1 mg/mL. 

With the aim of producing a safe antimicrobial agent to be applied in 
the food industry, and that does not alter the organoleptic and sensory 
properties of the product, curcumin nanoencapsulated in PVP was 
evaluated. Fig. 1 shows a schematic illustration of the steps evaluated. 
Here, the effect of curcumin was tested against Alicyclobacillus spp., 
important bacteria, being some highly food potentially spoilage species, 
as until now, there is no literature regarding in natura (unencapsulated) 
or nanoencapsulated curcumin against species of this genus. Further
more, as a proof of concept, the incorporation of the nanoparticles in 
orange juice was evaluated in terms of the color, pH, and ◦Brix of the 
product. 

2. Material and methods 

2.1. Bacterial strains and reagents 

The bacterial strains used were: Alicyclobacillus acidoterrestris DSMZ 
3922T (CBMAI 0244T), A. herbarius DSMZ 13609T (CBMAI 0246T), 
A. acidocaldarius subsp. rittmanni DSMZ 11297T (CBMAI 0245T), 
A. sendaiensis KCTC 3843, A. hesperidum DSMZ 12489T (CBMAI 0298T), 
and A. acidocaldarius DSMZ 446T (CBMAI 0299T). These strains were 
obtained from the German Collection of Microorganisms and Cell Cul
ture (DSZM – Deutsche Sammlung Von Mikroorganismen und Zellkul
turen). Furthermore, Salmonella enterica serotype Enteritidis ATCC 
13076 and Staphylococcus aureus ATCC 25923 strains were evaluated. 

Curcumin (from Curcuma longa (Turmeric), ≥65%; Sigma-Aldrich), 
polyvinylpyrrolidone (PVP, average mol wt 40,000; Sigma-Aldrich), 
Tween 80 (Dinâmica), and absolute ethanol (P.A.; Dinâmica) were 
used to obtain the curcumin nanoparticles by solid dispersion. Meth
anol, dimethyl sulfoxide (DMSO), petroleum ether, and absolute ethanol 
(P.A.; Dinâmica), potassium bromide (spectroscopy grade; Sigma- 
Aldrich) were used in the nanoparticle analysis. Concentrated pasteur
ized orange juice was obtained from the company Louis Dreyfus (LDC, 
Paranavaí-PR, Brazil). 

2.2. Preparation of bacterial suspensions 

2.2.1. Bacterial suspension 
The suspensions of the microorganisms, A. acidoterrestris, A. herbar

ius, A. acidocaldarius, A. sendaiensis, A. hesperidum and A. acidocaldarius 
subsp. rittmanni, were prepared by inoculating bacterial colonies from a 
culture plate onto BAT (Bacillus acidoterrestris) medium (Deinhard et al., 
1987), in BAT broth and stored in an oven at 45 ◦C for 24 h. After the 
suspensions were diluted in BAT broth according to the McFarland 0.5 
scale, to obtain a concentration of 1.0 × 104 μg/mL, and from the sus
pensions, serial dilution in 96-well plates for analysis of minimum in
hibition and bactericidal concentration (MIC and MBC) was performed. 

The same procedure was followed for the preparation of bacterial 
inoculum from Salmonella Enteritidis and Staphylococcus aureus, only 
replacing the agar and BAT broth with Mueller Hinton (MH) agar and 
broth, and stored in an oven at 35 ◦C for 24 h. 

2.2.2. A. acidoterrestris spores 
Standard spore suspensions were prepared from five colonies grown 

on BAT medium agar (Bacillus acidoterrestris medium) (Deinhard et al., 
1987); that were collected with a cell culture sowing loop and trans
ferred to tubes containing 3 mL of the same medium. The suspension was 
incubated at 45 ◦C for 24 h, then 0.3 mL was subsequently resuspended 
in 10 mL of BAT broth and again incubated at 45 ◦C for 72 h. The culture 
was transferred to a cryotube, centrifuged for 1 min at 10,000 rpm, 
followed by three washes with sterile distilled water, then stored under 

T.V. Dutra et al.                                                                                                                                                                                                                                 



International Journal of Food Microbiology 360 (2021) 109442

3

refrigeration at 5 ◦C until use. 

2.3. Curcumin nanoparticles obtained by solid dispersion 

Curcumin nanoparticles were obtained by the dissolution approach 
of solid dispersion, according to Karavas et al. (2006) and Miranda et al. 
(2016) with minor modifications. PVP (100 mg) was dissolved in 
ethanol (27.5 mL) under gentle stirring, after which curcumin (10 mg) 
and tween 80 (10 mg) were added and stirring was maintained for 5 
min. The mixture was then submitted to sonication (120 W and 1/8′ tip; 
Fisher Scientific) for 5 min under a pulse condition of 30s on and 10s off. 
Temperature was controlled with an ice bath. Finally, the solid disper
sion was dried in a forced air oven at 40 ◦C for 4 h. 

2.4. Nanoparticle characterization 

2.4.1. Fourier Transform Infrared Spectroscopy (FTIR) 
Fourier transform infrared (FTIR) spectra were acquired using a 

Shimadzu IRAffinity-1. Samples (PVP, in natura curcumin, curcumin 
nanoparticles, and a physical mixture of curcumin and PVP prepared in 
a mortar in the same proportions as used for the nanoparticles) were 
pelletized with potassium bromide, and spectra were collected with a 
resolution of 4 cm− 1, by combining 32 scans in the spectral range of 
4000 to 400 cm− 1. 

2.4.2. Morphological characterization 
Morphological characterization of the nanoparticles was performed 

using transmission electron microscopy (TEM; JEOL model JEM 2100, 
200 kV). The nanoparticle solid dispersion was diluted in distilled water 
(0.1% w/v) and dripped onto 400 mesh formvar/carbon covered copper 
grids. Before the analysis, grids were kept at room temperature in a 
desiccator with silica. 

2.4.3. Thermal characterization 
Thermal properties of the nanoparticles were investigated by dif

ferential scanning calorimetry (DSC; Perkin Elmer 4000). Samples (PVP, 
in natura curcumin, curcumin nanoparticles, and a physical mixture of 
curcumin and PVP in the same proportion as the nanoparticles) were 
inserted in sealed aluminum pans and analyzed under nitrogen flow (50 
mL/min) and heated from 20 to 300 ◦C at 20 ◦C/min. 

2.5. Antibacterial and bactericidal activity 

Minimum inhibitory (MIC) and bactericidal (MBC) concentrations 
were determined using the 96-well microplate microdilution technique 
according to CLSI (2012) methodology, M7-A9. For the inoculum acti
vation, discontinuous streaks were performed on Petri dishes containing 

specific growth agar, BAT agar for Alicyclobacillus spp. incubated at 
45 ◦C for 24 h, and Mueller Hinton (MH) agar for Salmonella Enteritidis 
and Staphylococcus aureus, incubated at 35 ◦C for 24 h. Colonies were 
then isolated and cultures were pre-activated for 24 h before test by 
seeding in the specific media and growing at the respective temperatures 
for each microorganism. In natura curcumin was dissolved in DMSO and 
BAT medium, the nanoparticles were dissolved in BAT or MH medium, 
according to the bacteria to be tested in the assay, and these were added 
to the first wells of a 96-well plate at an initial concentration of 2000 μg/ 
mL and then serially diluted. The bacterial inoculum was diluted ac
cording to the McFarland 0.5 scale (108 CFU), and then 5 μL of the 
bacterial suspension was added to each well of the 96-well plate and the 
plate was incubated at 45 ◦C for 24 h. The MIC was determined by visual 
analysis of turbidity. For the MBC, 10 μL of each well was plated on BAT 
and MH agar plates in triplicate, followed by incubation at 45 ◦C for 24 
h, to see whether there was any subsequent growth. The same test was 
applied to the spores of A. acidoterrestris. 

2.6. Cytotoxic evaluation 

The cell lines of human tumors used in the cytotoxicity analysis were 
obtained from the Leibniz DSMZ Institute – German Collection of Mi
croorganisms and Cell Cultures. 

The evaluation of cytotoxicity was performed for the curcumin 
nanoparticles, as well as the PVP and curcumin alone, using the 
following cell lines of human tumors: gastric adenocarcinoma (AGS), 
breast adenocarcinoma (MCF-7), non-small cell lung carcinoma (NCI- 
60), and colorectal adenocarcinoma (Caco-2). Non-tumor liver primary 
culture (PLP2), established by our lab, and non-tumor culture from Af
rican green monkey (Vero) obtained from the ECCAC, were also evalu
ated. The cell lines were incubated in RPMI-1640 containing heat- 
inactivated fetal bovine serum (FBS; 10%), glutamine (2 mM), peni
cillin (100 U/mL), and streptomycin (100 μg/mL), and incubated at 
37 ◦C with humidified air and 5% CO2. 

Each cell line was prepared at 1.0 × 104 cells/well in 96-well 
microplates and incubated for 24 h to allow cell attachment. The com
pounds were added at specific concentrations (0,5 μg/mL of the con
centration of 1.0 × 104 cells/well) and incubated for a further 48 h. 
Thereafter, cold trichloroacetic acid (10%, 100 μL) was added to fix the 
cells, and allowed to stand for 1 h at 4 ◦C. The plates were then washed 3 
times with deionized water and air-dried. SRB solution (0.1% sulfo
rhodamine B in 1% acetic acid, 100 μL) was added and the plate was 
incubated at room temperature for 30 min. The plates were then washed 
with acetic acid (1%) to remove excess SRB and allowed to air dry. 
Finally, adhered SRB was solubilized by the addition of Tris-HCl (10 
mM, 200 μL) and the plate was read at 540 nm in a microplate reader 
(BioTek ELx800). For each cell line tested, the GI50 values, 

Fig. 1. Schematic illustration of curcumin nanoparticles evaluation.  
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corresponding to the concentration of extract that inhibited 50% of cell 
growth, was calculated. Two independent experiments were performed, 
each one carried out in duplicate and the results are expressed as mean 
values and standard deviation (SD). Ellipticine was used as a positive 
control (Abreu et al., 2011). 

2.7. Antioxidant capacity 

2.7.1. Antihemolytic activity 
The antihemolytic activity of the nanoparticles, PVP, and curcumin 

was evaluated by the oxidative hemolysis inhibition assay (OxHLIA) 
described previously by Takebayashi et al. (2012) with some modifi
cations. Sheep blood samples were collected from healthy animals and 
centrifuged for 5 min at 1000g and 10 ◦C. Plasma and buffy coats were 
discarded and erythrocytes were first washed once with NaCl (150mM) 
followed by three washes with phosphate-buffered saline (PBS; pH 7.4) 
(Evans et al., 2013). The erythrocyte pellet was then resuspended in PBS 
at 2.8% (v/v). Using a flat bottom 48-well microplate, 200μL of eryth
rocyte solution was mixed with 400μL of either PBS solution (control), 
sample dissolved in PBS, or water (for complete hemolysis). Trolox was 
used as positive control. After pre-incubation at 37 ◦C for 10min with 
shaking, 2,2′-azobis(2-methylpropionamidine) dihydrochloride (AAPH; 
160mM in PBS, 200μL) was added and the optical density was measured 
at 690nm (BioTek ELx800). After that, the plate was incubated under 
the same conditions and the optical density was measured every 10min 
at the same wavelength for approximately 400min (Takebayashi et al., 
2012). The percentage of the erythrocyte population that remained 
intact (P) was calculated according to Eq. (1). 

P (%) =

(
St − CH0

S0 − CH0

)

× 100 (1)  

where St and S0 correspond to the optical density of the sample at t and 
0min, respectively, and CH0 is the optical density of the complete he
molysis at 0min. The results were expressed as delayed time of hemo
lysis (Δt), which was calculated according to Eq. (2). 

∆t (min) = Ht50 Sample − Ht50 Control (2)  

where Ht50 is the 50% hemolytic time (min) obtained from the hemolysis 
curve of each antioxidant sample/control concentration. The Δt values 
were then correlated to the antioxidant sample concentrations (Take
bayashi et al., 2012) and, from the correlation obtained, the sample 
concentration able to promote a Δt hemolysis delay was calculated. The 
results were given as IC50 values (μg/mL) at Δt 60, (i.e., sample con
centration required to keep 50% of the erythrocyte population intact for 
60 min). 

2.7.2. Thiobarbituric Acid Reactive Substances (TBARS) assay 
For the TBARS assay, pig (Susscrofa) brain tissues were dissected and 

homogenized with Tris-HCl buffer (20 mM, pH 7.4) to obtain a ho
mogenate (1:2 w/v). The brain tissue homogenate was then centrifuged 
at 3000 g for 10 min and the supernatant was collected. Nanoparticles, 
PVP, and curcumin samples (0.2 mL at different concentrations dis
solved in ethanol), together with FeSO4 (10 μM; 0.1 mL) and ascorbic 
acid (0.1 mM; 0.1 mL), were incubated with the brain supernatant (1:2 
w/v; 0.1 mL) at 37 ◦C for 1 h. Then, tri-chloroacetic (28% w/v; 0.5 mL) 
and thiobarbituric (TBA; 2% w/v; 0.38 mL) acids were added and the 
mixture was heated at 80 ◦C for 20 min and centrifuged 3000 g for 5 min. 
The evaluation of the lipid peroxidation inhibition in porcine brain 
homogenates results from the reduction of TBARS by the formation of 
the malondialdehyde-thiobarbituric acid complex (MDA-TBA). The 
color intensity displayed by this complex was measured by absorbance 
at 532 nm (UV–Vis Specord 200 spectrophotometer, Analytik Jena, 
Jena, Germany). The results were expressed in values of IC50, the con
centration of sample necessary to obtain 50% of antioxidant activity 
(Santos et al., 2019). 

2.8. Incorporation of nanoencapsulated curcumin in orange juice 

The nanoencapsulated curcumin was incorporated in the orange 
juice in two concentrations, based on the MIC results for the most 
resistant microorganism among the Alicyclobacillus spp. evaluated 
(A. herbarius 0246T with an MIC of 125 μg/mL). First, concentrated and 
frozen orange juice (61.5◦Brix) was reconstituted with water 
(11.1◦Brix). After that, 50 mL samples were separated into four groups 
in triplicate: 1) control group (reconstituted juice), 2) 1 × MIC (with 
nanoencapsulated curcumin added at a concentration equivalent to the 
MIC, which was 125 μg/mL), 3) 5 × MIC (with nanoencapsulated cur
cumin added at a concentration equivalent to 5-fold MIC, which was 
125 × 5 = 525 μg/mL), and 4) 10 × MIC (with nanoencapsulated cur
cumin added at a concentration equivalent to 10-fold MIC, which was 
125 × 10 = 1250 μg/mL). The samples were homogenized with a 
magnetic stirrer. The technological properties of color, pH, and ◦Brix 
were evaluated just after sample preparation and after 3 days of storage 
(common shelf life of a juice prepared at home by the reconstitution of a 
commercial concentrated orange juice) in the fridge (8 ± 2 ◦C). 

For the color parameter determination, a Delta Vista 450G (Delta 
Color) colorimeter coupled with a liquid measurement accessory was 
used. A 4 mm measuring aperture was applied for the measurements of 
the CIELAB system parameters: L* (lightness), a* (from green (− ) to red 
(+)), and b* (from blue (− ) to yellow (+)). Also, chroma (C*) and hue 
angle (h◦) were determined. The pH was determined with a Gehaka (PG 
2000) pH meter, and the ◦Brix with a bench refractometer (RMT, BEL 
Engineering). All readings of each sample were performed in triplicate. 

To evaluate the antimicrobial effect of the nanoparticle in the food 
matrix, A. acidoterrestris 0244T was used for the subsequent assays, as it 
is the main spoiler of orange juice, and the best result for the in vitro 
antimicrobial activity was obtained for this strain. Using nanoparticle 
concentrations equivalent to the MIC for this strain, 1 × MIC (62.5 μg/ 
mL), 4 × MIC (250 μg/mL), and 8 × MIC (500 μg/mL) were tested for 
their antimicrobial potential in the orange juice. 

The concentrated orange juice was reconstituted with sterile water to 
a concentration of 11◦Brix. In 24-well plates, negative control wells 
received only the reconstituted juice, and positive control wells received 
the juice and inoculum of A. acidoterrestris 0244T at 5 μL/mL, as 
described in Section 2.5. In the other wells, different concentrations of 
the nanoparticles were added to the orange juice and bacteria suspen
sion. The plate was incubated at 45 ◦C for 24 h. After this, 10 μL of each 
well was plated on BAT agar plates followed by further incubation at 
45 ◦C for 24 h, and then counting to determine the reduction rate ob
tained by the use of nanoparticles. 

2.9. Statistical analysis 

The Student's t-test, analysis of variance (ANOVA), and the Tukey 
test at a significance level of 5% (P < 0.05) were used to evaluate the 
antioxidant capacity data in the Statistica 7.0 software (Statsoft Inc., 
Tulsa, OK, USA, 2004). Factorial ANOVA and Tukey's test (P < 0.05) 
were applied to color, pH, and ◦Brix data in Statistica 7.0 (Statsoft, USA). 
Statistical analysis was performed using one-way analysis of variance 
(ANOVA) and Tukey's multiple-comparison posttest. Differences be
tween groups were considered to be significant at a P value of <0.05. 
Statistical analyses were performed with GraphPad Prism 9.0 (GraphPad 
Software, Inc., San Diego, CA). 

3. Results and discussion 

3.1. Nanoparticle characterization 

Fig. 2 shows the FTIR spectra of curcumin-loaded nanoparticles, a 
physical mixture of PVP and curcumin, and curcumin and PVP alone. 

It was possible to observe the characteristic bands of the curcumin 
aromatic ring at 1605 cm− 1 (C–C) and 1508 cm− 1 (C=C) (Lemes et al., 
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2017) in the free-form curcumin and the physical mixture of the com
pounds (curcumin and PVP), while these bands were attenuated in the 
nanoparticle spectra. This behavior suggests that some degree of inter
action between curcumin and PVP took place in the nanoparticles, in 
addition to the curcumin entrapment. Furthermore, the stretching vi
bration of curcumin -OH can be observed at 3512 and 3387 cm− 1 in the 
curcumin and physical mixture spectra; however, in the spectra of the 
curcumin nanoparticles spectra, these bands cannot be visualized due 
the presence of a bandwidth relative to adsorbed water near 3550 cm− 1. 
Also, other curcumin characteristic absorption bands can be observed at 
1026 cm− 1 (C–O groups) and 963 cm− 1 (aromatic C–H) for the cur
cumin alone and the physical mixture, but these are greatly attenuated 
in the nanoparticle spectra, another indication of efficient encapsulation 
(Almeida et al., 2018a, 2018b; Silva de Sá et al., 2019). 

Characterization analyses demonstrated that nanoparticles were 
formed (TEM images), curcumin was encapsulated properly, and the 
nanoparticles were stable (FTIR and DSC). In the chemical character
ization analysis by FTIR, the interaction between the encapsulant bands 
of PVP and curcumin can be verified, as indicated by the decrease in 
spectrum intensity. This suggests that curcumin has been trapped effi
ciently, which makes the particle more soluble (Almeida et al., 2018a, 
2018b). The absence of the curcumin melting temperature (Tm) for the 
nanoparticle samples, as determined by DSC, demonstrated that the 
curcumin is interacting with PVP in its amorphous form (Almeida et al., 
2018a, 2018b). 

The morphology of the nanoparticles can be observed in Fig. 3. 
Nanoparticles presented irregular shape, similar to that reported by 
Dong et al. (2018) who produced a solid dispersion of atorvastatin cal
cium with Pluronic 188, and by Almeida et al. (2018a, 2018b) who 

produced solid dispersions of curcumin in PVP. The size of the curcumin- 
loaded nanoparticles identified in the TEM images varied between 20 
and 250 nm, which is in accordance with the results obtained by 
Almeida et al. (2018a, 2018b). 

The thermal characterization of the curcumin-loaded nanoparticles 
is presented in Fig. 4. The melting temperature (Tm) of crystalline 
curcumin is clearly located at 175 ◦C, as observed by other authors 
(Lemes et al., 2017). In relation to the PVP thermogram, an endothermic 
peak can be seen with maximum temperature of 70 ◦C, which is related 
to the evaporation of adsorbed water, since PVP is a highly hydrophilic 
polymer (Almeida et al., 2018a, 2018b). In the thermogram of the 
physical mixture, the curcumin Tm was detected with lower intensity 

Fig. 2. FTIR spectra: PVP; to curcumin, PVP and curcumin physical mixture; 
curcumin loaded nanoparticles. 

Fig. 3. Transmission electron microscopy of curcumin loaded nanoparticles.  

Fig. 4. DSC thermograms: PVP; to curcumin, PVP and curcumin physical 
mixture; curcumin loaded nanoparticles. 
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than observed for the curcumin alone due to its proportion in relation to 
PVP (10% w/w) in the mixture. In the curcumin-loaded nanoparticle 
thermogram, the curcumin Tm was not detected, which may be 
considered an indication that curcumin is in its amorphous form inter
acting with PVP (Silva de Sá et al., 2019). 

3.2. Antimicrobial activity 

The MIC and MBC results for encapsulated curcumin and in natura 
curcumin against the tested microorganisms are given in Table 1. Re
sults indicated that the in natura curcumin had poor activity against the 
microorganisms when compared to the nanoencapsulated curcumin. 
Typically, encapsulated curcumin presents advantages over its free form 
(non-encapsulated, or in natura), particularly regarding water solubility 
and bioavailability (Silva et al., 2018). Also, these nanoparticles are 
readily dispersible in water which favors the activity of the encapsulated 
compound (Almeida et al., 2018a, 2018b). Since in natura curcumin has 
low solubility in water, the compounds responsible for its antimicrobial 
activity are not freely available when in contact with the contaminated 
environment. However, in its nanoencapsulated form, with increased 
solubility, the compounds are released and ready to combat the micro
organisms present, as observed in this study with greater antimicrobial 
activity observed for the curcumin in its nanoparticle form. The use of 
the nanoparticle technique, as demonstrated in our studies, can enhance 
the activity of novel antibacterial compounds with low solubility. 

The sporicidal activity of curcumin nanoparticles against the spores 
of A. acidoterrestris was also evaluated. The encapsulated curcumin also 
presented superior action (62.5 μg/mL) against the spores than the in 
natura curcumin (1000 μg/mL), further proving the encapsulation effi
ciency of curcumin by the solid dispersion. 

Lyu et al. (2020) evaluated the antimicrobial efficiency of silver 
nanoparticles (Ag) combined with curcumin (C) in a complex with 
oxidized amylose (AO), using S. aureus as an example of a Gram-positive 
bacteria. The authors obtained similar results to the present work, where 
the AO-Ag-C together showed greater antimicrobial capacity when 
compared to the oxidized amylose with silver alone (AO-Ag) or with 
curcumin alone (AO-C). The concentration determined by the re
searchers was equal to 2.5 mg/mL of the AO-Ag-C solution, higher than 
the result found in this work (Table 1). 

Mirzahosseinipour et al. (2020) evaluated, through antimicrobial 
photodynamic therapy, the action of nanoparticles of curcumin and 
silica delivered to planktonic cells of the Gram-positive S. aureus and the 

Gram-negative P. aeruginosa. The authors obtained a reduction of 1.2 log 
CFU/mL in the count of S. aureus cells, and 1 log CFU/mL for 
P. aeruginosa, when using a concentration of 1 mg/mL of the curcumin- 
silica nanoparticles. The Gram-positive bacteria demonstrated a greater 
susceptibility to these nanoparticles in LED light, probably due to the 
difference in their cell wall structure. Gram-positive cells have a cyto
plasmic membrane covered by a simple cell wall, which would facilitate 
the internalization of photosensitizers. However, in the present study a 
more significant reduction, equal to 4 log CFU/mL, was obtained with 
the curcumin-loaded nanoparticle (at a concentration of 125 μg/mL) 
against S. aureus, with a smaller reduction against the Gram-positive 
Alicyclobacillus strains tested. 

Rai et al. (2008) identified the mechanism of antimicrobial action of 
curcumin as targeting FtsZ, a prokaryotic homologue of the eukaryotic 
cytoskeleton protein, tubulin. FtsZ is responsible for forming the Z ring 
in the intermediate cell that leads to bacterial division and multiplica
tion. Curcumin in contact with FtsZ leads to a disturbance in the for
mation of this ring that inhibits bacterial cytokinesis. Strong inhibition 
of cytokinetic Z ring formation by curcumin was observed in Bacillus 
subtilis 168. The curcumin bound to FtsZ in vitro with a dissociation 
constant of 7.3 ± 1.8 μM, in addition to increasing GTPase. Therefore, 
the authors concluded that by disturbing the GTPase activity of FtsZ ring 
assembly, curcumin is lethal to bacteria, inhibiting cell proliferation 
(Figure Supplementary Fig. 1). 

3.3. Cytotoxicity in cell lines 

The results obtained from the cytotoxicity assay with cell lines are 
presented in Fig. 5. 

Nanoencapsulated curcumin showed increased anti-tumoral poten
tial against the four cell lines evaluated, when compared to free form 
curcumin. The most effective nanoparticle action was against the gastric 
adenocarcinoma (AGS), since the GI50 concentration determined was 
4.1-fold higher than curcumin in its free form. Nanoparticles presented 
the following importance against the tumor cell lines: AGS > MCF7 >
NCI-60 > Caco-2. It is worth noting that the encapsulating agent (PVP) 
presented low cytotoxicity against all the cell lines, including the non- 
tumor PLP-2 and Vero cells. Furthermore, encapsulation modulated 
the cytotoxicity of curcumin against PLP-2 and Vero cells, reducing its 
cytotoxic effect. Santos et al. (2019) also found that with the curcumi
noids (curcumin, demethoxy curcumin, and bisdemethoxycurcumin) 
encapsulation in PVP there was a decrease in the cytotoxicity against 
PLP-2 cells. Also, in relation to PLP-2 cells, Almeida et al. (2018a, 
2018b) found the same pattern between unencapsulated curcumin and 
the curcumin encapsulated in PVP under the same conditions applied in 
the present work. According to Chankhampan et al. (2014), the use of 
biocompatible polymers in the encapsulation process allows a better 
toleration by the cells. Still, according to González et al. (2019), these 
compounds avoid normal tissues and accumulate only in tumors, due to 
the action of nanocarriers. In work presented by Niza et al. (2019), 
doxorubicin was encapsulated in devices based on tailored bare poly
caprolactone with the intent of acting on glioblastoma. The authors 
evaluated the cytotoxicity against the tumor cell lines (C6, U87, A2780S, 
and A2780R), as well as against non-tumor cell lines (astrocytes and 
murine macrophages as these are immune cells present in the sur
rounding tissue of the tumor). Results showed that the treatment of non- 
tumor cells with free doxorubicin induced a drastic reduction of mito
chondrial function that was significantly lower when these cells were 
treated with nanoencapsulated doxorubicin. This suggested that there 
was sustained released of the drug from the nanocarrier, which allowed 
the cytotoxic effect on the tumor cells whilst reducing the cytotoxic ef
fect in the surrounding healthy tissue. 

3.4. Antioxidant capacity 

The antioxidant capacity of the nanoencapsulated curcumin, in 

Table 1 
Minimum inhibitory concentration (MIC) and minimum bactericidal concen
tration (MBC) determined for curcumin-loaded nanoparticles and in natura 
curcumin.   

Curcumin-loaded 
nanoparticles 

In natura curcumin 

MIC (μg/ 
mL) 

MBC (μg/ 
mL) 

MIC (μg/ 
mL) 

MBC (μg/ 
mL) 

A. acdioterrestris 0244T 62.5 ±
0.00 

500 ±
0.00 

1000 ±
0.00 

>1000 ±
0.00 

A. herbarius 0246T 125 ±
0.00 

250 ±
0.00 

>1000 ±
0.00 

>1000 ±
0.00 

A. acidocaldarius subsp. 
rittmanni 0245T 

62.5 ±
0.00 

125 ±
0.00 

>1000 ±
0.00 

>1000 ±
0.00 

A. sendaiensis KCTC 3843 125 ±
0.00 

250 ±
0.00 

>1000 ±
0.00 

>1000 ±
0.00 

A. hesperidum 0298T 62.5 ±
0.00 

125 ±
0.00 

>1000 ±
0.00 

>1000 ±
0.00 

A. acidocaldarius 0299T 125 ±
0.00 

250 ±
0.00 

1000 ±
0.00 

1000 ±
0.00 

Salmonella Enteritidis ATCC 
13076 

1000 ±
0.00 

>1000 ±
0.00 

>1000 ±
0.00 

>1000 ±
0.00 

Staphylococcus aureus ATCC 
25923 

125 ±
0.00 

1000 ±
0.00 

1000 ±
0.00 

>1000 ±
0.00 

Results expressed as mean ± standard deviation. 
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Fig. 5. Cytotoxicity assay results obtained for nanoencapsulated curcumin, the encapsulating agent PVP and curcumin in its free form (Bars with * mean P < 0.05 
between the samples). 
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terms of lipid peroxidation inhibition (TBARS) and antihemolytic ac
tivity, is presented in Table 2. 

The TBARS assay provides information on the compound's capacity 
to inhibit the formation of thiobarbituric acid reactive substances, such 
as malondialdehyde generated from the ex vivo decomposition of lipid 
peroxidation products. It is possible to observe in Table 2 that free form 
curcumin had higher antioxidant capacity when compared to the 
nanoencapsulated curcumin (P < 0.05). The same behavior was iden
tified by Santos et al. (2019), as the authors found an IG50 11.4-fold 
higher for curcuminoids when compared to the encapsulated curcumi
noids. In the present work there was a significant difference detected (P 
< 0.05), however this difference was only 1.2-fold higher. 

In relation to the oxidative hemolysis inhibition assay (OxHLIA), the 
IC50 values (μg/mL) at Δt 60 min were determined, that is, the con
centration required to protect 50% of the erythrocyte population (P) 
from the hemolytic action caused by the used oxidizing agent for 60 min. 
Peroxyl radicals generated from 2,2′-azobis(2-methylpropionamidine) 
dihydrochloride (AAPH) attack the biomembranes of erythrocytes and 
eventually cause hemolysis, that can be inhibited by antioxidant activ
ities. This test presents many advantages over DPPH and ORACFL, 
especially as the results obtained reflect biologically relevant radical- 
scavenging activity (Takebayashi et al., 2012). Results presented in 
Table 2 show that the action of nanoencapsulated curcumin is statistical 
the same of free form curcumin at Δt 60 min (P > 0.05). On the other 
hand, the encapsulating agent (PVP) did not show expressive antioxi
dant capacity when compared to the nanoparticles, curcumin, and 
Trolox. It is worth noting that to make the curcumin evaluation possible 
(for both TBARS and OxHLIA), it was first dissolved in DMSO due to its 
poor water solubility. In this sense nanoencapsulated curcumin reaches 
the goal of bioavailability with efficient water dispersion and action in 
simulated biological systems. 

In their review, Kunnumakkara et al. (2019) described the extensive 
therapeutic potential of curcumin through several clinical trials, 
combating chronic diseases such as cardiovascular disease, inflamma
tory disease, metabolic disease, neurological disease, skin disease, liver 
disease, and various types of cancer. It was suggested that oral or topical 
curcumin was mostly well tolerated. Through the association of curcu
min with other compounds or formulations, such as in the form of 
nanoparticles, micelles, liposomes, phospholipids, and exosomes, the 
bioavailability of this compound is greatly enhanced. In another review, 
Nair et al. (2019) analyzed the anti-cancer effects of the non- 
curcuminoid compounds present in the curcuma rhizome in various 
formulations and noted that their effect can be complementary to that of 
curcuminoids, thus enabling the joint use of these compounds in natural 
cancer treatments. 

3.5. Technological properties of nanoencapsulated curcumin in orange 
juice 

Bacteria of the genus Alicyclobacillus can affect the quality of 
industrially processed juices (Prado et al., 2019). Since curcumin 
nanoparticles presented promising results against these bacteria, the 
technological properties of juice were evaluated following the 

incorporation of the nanoparticles in order to determine the feasibility of 
their use in the food industry. 

Color parameters and pH of the orange juice prepared with nano
encapsulated curcumin are presented in Fig. 6. The MIC applied in the 
tests was equal to 125 μg/mL, since A. herbarius 0246T was the most 
resistant microorganism, among the Alicyclobacillus strains tested 
(Table 1). The addition of nanoparticles, as well as the storage time, did 
not affect significantly affect the ◦Brix results. 

There was a significant difference (P < 0.05) in the pH, mainly 
associated with the storage time, but not between the orange juice with 
and without the nanoparticles. This result is likely due to the acid hy
drolysis of polysaccharides into monosaccharides and disaccharides 
(Singh and Sharma, 2017). Similar results were obtained by Porto et al. 
(2017) and Azadbakht et al. (2021). 

The addition of nanoparticles significantly affected all the color pa
rameters. A significant decrease in luminosity (L*) occurred when 
nanoparticles were added at the 10 and 5-fold MIC concentrations, when 
compared to the control. After 3 days of storage, the control samples did 
not show L* variation when compared to the initial day of evaluation. 
All the other samples presented significantly lower L* values. On the 
other hand, a significant increase in the a* parameter was detected 
(redness tendency for positive a* values) when nanoparticles were 
added, which was expected since the nanoparticles have an orange- 
yellow color. Also, a significant increase in the b* parameter was 
found when the nanoparticle concentration was increased. Storage time 
affected the a* and b* parameters of all the samples, with the exception 
of the control and the 5-fold MIC samples that remained constant over 
the three days. 

Hue angle (◦h) and chroma (C*) that represent color classification 
(red, yellow, blue, etc.) and saturation or intensity respectively, are 
derived from a* and b*. These parameters may accurately describe color 
measurements and are more effective for the judgement of color analysis 
(McGuire, 1992). The ◦h scale indicates a yellowish color for values in 
the range of 90◦, and reddish color in the range of 0◦ (Nanda et al., 
2020). In Fig. 6 it is possible to observe that control samples tended to be 
yellow while nanoparticles added to the orange juice had lower ◦h 
values, associated with an orange color (yellow and red mixtures). 
Higher C* values were obtained for orange juice samples with the 
nanoencapsulated curcumin, thus showing a more saturated color when 
compared to the control. Color saturation was statistically the same 
during the storage time for the 5-fold MIC sample. According to Lee et al. 
(2013), the food color with a higher chroma value is preferred by con
sumers, moreover, in the case of yellowish foods, a higher hue angle is 
also preferred. The orange juice samples with nanoparticles added at the 
5-fold MIC concentration should be submitted to a sensory analysis test 
to confirm this hypothesis, since it showed high values of both hue angle 
and chroma, as well as good color stability during the storage time. 

The results obtained for the antimicrobial test of the nanoparticles in 
reconstituted orange juice are shown in Fig. 7; these showed a reduction 
in the microbial concentration with the different nanoparticle concen
trations applied, confirming the results obtained in vitro. The positive 
control showed a growth of 6.31 log CFU/mL of A. acidoterrestris 0244T, 
after 24 h, while the growth following application of 1 × MIC of the 
nanoparticles (62.5 μg/mL) was 4.52 log CFU/mL, for 4 × MIC (250 μg/ 
mL) the growth was 2.46 log CFU/mL, and for 8 × MIC (500 μg/mL) the 
growth was 1.04 log CFU/mL. Thus, the application of nanoparticles at a 
concentration of 8 × MIC reduced A. acidoterrestris contamination in 
orange juice by more than 5 logs CFU/mL, indicating its possible use as 
an antimicrobial agent in citrus beverage industries. 

4. Conclusion 

Curcumin encapsulated in polyvinylpyrrolidone (PVP) nanoparticles 
showed antimicrobial and antibacterial activities against strains of Ali
cyclobacillus spp., as well as against the pathogenic bacteria, S. aureus 
and Salmonella Enteritidis, and the spores of A. acidoterrestris. The 

Table 2 
Antioxidant capacity evaluation of encapsulated curcumin (nanoparticles), the 
encapsulating agent (PVP) and in natura curcumin.   

TBARS (IC50; μg/mL) OxHLIA (IC50; μg/mL) Δt = 60 min 

PVP Nd* 1838.5c ± 27.2 
Nanoparticles 78.0c ± 2.9 84.0b ± 3.0 
Curcumin 63.0b ± 2.7 99.0b ± 2.0 
Trolox 5.4a ± 0.2 21.8a ± 0.2 

Nd*- not detected; Results expressed as mean ± standard deviation; a,b,cdifferent 
letters in the same column indicate significant difference between the treatments 
by Tukey's test (P < 0.05). 
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thermal characterization of the nanoparticles by DSC demonstrated that 
curcumin is in its amorphous phase, due to its interaction with PVP, as 
corroborated by FTIR spectra. TEM images demonstrated a large size 
distribution of the nanoparticles. The cytotoxicity of encapsulated cur
cumin against non-tumor cell lines was reduced, when compared to in 
natura (free form) curcumin. These findings demonstrate the stability of 
the nanoparticles. This study highlights the importance of choosing an 
encapsulating agent that potentiates the effects of the compound to be 
studied, in this case curcumin with PVP. This nanoparticle combination 
resulted in an improvement in the antimicrobial capacity, as well as a 

reduction in toxicity, providing an alternative natural product to be used 
by the food industry to combat microbial contamination. The produced 
nanoparticles were incorporated into orange juice samples, under two 
concentrations, as defined by the MIC of the most resistant Alicycloba
cillus strain. When applied at the 5-fold MIC concentration, good pH, 
◦Brix, and color stability were determined during three days of storage 
(8 ◦C), which should be studied further in terms of sensory preference. 

Fig. 6. Technological properties (pH, color parameters: L* (luminosity), a* (from green (− ) to red (+)), and b* (from blue (− ) to yellow (+), h◦ (hue angle) and C* 
(chroma)) of the orange juice added with nanoencapsulated curcumin: control, 1MIC 0 d (1-fold MIC, 0 day of storage); 5MIC 0 d (5-fold MIC, 0 day of storage), 
10MIC 0 d (10-fold MIC, 0 day of storage), 1MIC 3 d (1-fold MIC, 3 days of storage), 5MIC 3 d (5-fold MIC, 3 days of storage), 10MIC 3 d (10-fold MIC, 3 days of 
storage). MIC = 125 μg/mL. a,b Averages followed by different letters presents significant difference by Tukey's test (P < 0.05). (For interpretation of the references 
to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 7. Antimicrobial activity of nanoparticles against A. acidoterrestris 0244T in reconstituted orange juice for 24 h at 45 ◦C. Concentrations of the curcumin 
nanoparticles in MIC values, wherein 1MIC is equal to 62.5 μg/mL, 4MIC is equal to 250 μg/mL and 8MIC is equal to 1000 μg/mL. 
*NC: negative control; PC: positive control. Averages followed by different letters presents significant difference by Anova and Tukey's test (P < 0.05). 
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Silva de Sá, I., Peron, A.P., Leimann, F.V., Bressan, G.N., Krum, B.N., Fachinetto, R., 
Pinela, J., Calhelha, R.C., Barreiro, M.F., Ferreira, I.C.F.R., Gonçalves, O.H., Ineu, R. 
P., 2019. In vitro and in vivo evaluation of enzymatic and antioxidant activity, 
cytotoxicity and genotoxicity of curcumin-loaded solid dispersions. Food Chem. 
Toxicol. 125, 29–37. https://doi.org/10.1016/j.fct.2018.12.037. 

Singh, S.K., Sharma, M., 2017. Review on biochemical changes associated with storage of 
fruit juice. Int. J. Curr. Microbiol. App. Sci. 6 (8), 236–245. https://doi.org/ 
10.20546/ijcmas.2017.608.032. 

Spricigo, D.A., Bardina, C., Cortes, P., Liagostera, M., 2013. Use of a bacteriophage 
cocktail to controlSalmonella in the food and food industry. Int. J. Food Microbiol. 
165, 169–174. https://doi.org/10.1016/j.ijfoodmicro.2013.05.009. 

Takebayashi, J., Iwahashi, N., Ishimi, Y., Tai, A., 2012. Development of a simple 96-well 
plate method for evaluation of antioxidant activity based on the oxidative 
haemolysis inhibition assay (OxHLIA). Food Chem. 134, 606–610. https://doi.org/ 
10.1016/j.foodchem.2012.02.086. 

Tremarin, A., Canbaz, E.A., Brandão, T.R.S., Silva, C.L.M., 2019. Modelling 
Alicyclobacillusacidoterrestris inactivation in apple juice using thermo sonication 
treatments. LWT Food Sci. Technol. 102, 159–163. https://doi.org/10.1016/j. 
lwt.2018.12.027. 

Wang, Z., Li, X., Zhao, Y., Yuan, Y., Cai, R., Yue, T., 2018. Synthesis of multifunctional 
fluorescent magnetic nanoparticles for the detection of Alicyclobacillus spp. in apple 
juice. Food Res. Int. 114, 104–113. https://doi.org/10.1016/j.foodres.2018.07.065. 

WHO-World Health Organization, 2018. Key facts. Salmonella. https://www.who. 
int/news-room/fact-sheets/detail/salmonella-(nontyphoidal). 

T.V. Dutra et al.                                                                                                                                                                                                                                 

https://doi.org/10.1016/j.indcrop.2018.02.073
https://doi.org/10.1016/j.ijpharm.2017.12.016
https://doi.org/10.1016/j.ijpharm.2017.12.016
https://doi.org/10.1016/j.foodcont.2015.07.018
https://doi.org/10.1016/j.foodcont.2015.07.018
https://doi.org/10.1042/bj20070891
https://doi.org/10.1042/bj20070891
https://doi.org/10.1039/c8fo02431f
https://doi.org/10.2147/ijn.s124696
https://doi.org/10.1016/j.tifs.2017.12.004
https://doi.org/10.1016/j.fct.2018.12.037
https://doi.org/10.20546/ijcmas.2017.608.032
https://doi.org/10.20546/ijcmas.2017.608.032
https://doi.org/10.1016/j.ijfoodmicro.2013.05.009
https://doi.org/10.1016/j.foodchem.2012.02.086
https://doi.org/10.1016/j.foodchem.2012.02.086
https://doi.org/10.1016/j.lwt.2018.12.027
https://doi.org/10.1016/j.lwt.2018.12.027
https://doi.org/10.1016/j.foodres.2018.07.065
https://www.who.int/news-room/fact-sheets/detail/salmonella-(nontyphoidal)
https://www.who.int/news-room/fact-sheets/detail/salmonella-(nontyphoidal)

