

Cálculo Diferencial e Integral: um kit de sobrevivência "SageMath"

Vitória Vendramini Gongora. Orientador: Prof. Dr. Rodrigo Martins.

Funções Contínuas:

Uma maneira intuitiva de pensar na função contínua é lembrar que é aquela que não possui "quebras" em seu gráfico. Podemos ter funções contínuas em um ponto e em um intervalo. Vamos observar a definição formal para cada um dos casos.

Definição: Uma funçao
$$f$$
 é contínua em um número a se $\lim_{x\to a} f(x) = f(a)$

Em outras palavras, para uma função f ser contínua no ponto a ele deve:

- i . $a \in D_f$;
- ii . $\lim_{x\to a} f(x)$ existe (não sendo infinito);
- iii . $\lim_{x\to a} f(x) = f(a)$.

Se um ou mais dos tópicos acima não forem satisfeitos chamamos essa função de descontínua em a.

Definição: Uma funçao f será contínua em um intervalo se for contínua em todos os números do intervalo. (Se f for definida somente de um lado do extremo do intervalo, entendemos continuidade no extremo como continuidade à direita ou à esquerda.)

(Para essas definições e mais: Referência [1], pg. 147, 149)

Exemplos com o SageMath:

Exemplo 1

Vamos obserar se a função $f(x) = x^2$ é contínua no ponto x = 3.

```
In [1]: limit(x**2, x=3)
Out[1]: 9

In [2]: f(x)=x**2 f(3)
Out[2]: 9

In [4]: plot(x**2, -6,6, legend_label-'Grafico de f(x)=x^2')
Out[4]:

35

30

25

20

15

6

4

2

4

6
```

Como auxílio do SageMath podemos ver que:

$$\lim_{x \to 3} x^2 = 9 = f(3).$$

Assim, pela definição de função contínua em um ponto a, a função $f(x) = x^2$ é contínua no ponto x = 3.

Exemplo 2

Agora vamos analisar a função g, onde,

$$g(x) = \begin{cases} x, \text{ se } x \le 3, \\ x^2, \text{ se } x > 3. \end{cases}$$
 (1)

• A função g(x) é contínua no ponto x = 1?

Observe que:

$$\lim_{x \to 1} g(x) = 1 = g(1)$$

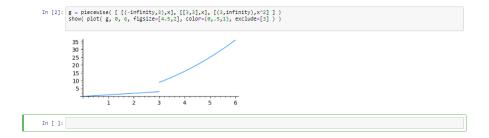
Logo g(x) é contínua no ponto x = 1.

• A função g(x) é contínua no ponto x = 3?

Para calcular o limite no ponto x=3 temos que analisar os limites laterais no ponto 3.

```
In [3]: limit(x, x=3, dir='left')
Out[3]: 3
In [4]: limit(x**2, x=3, dir='right')
Out[4]: 9
In [ ]:
```

Note que os limtes laterais no ponto x=3 são diferentes, logo


$$\lim_{x \to 3} g(x) = \nexists$$

portanto, g(x) é descontínua no ponto x = 3.

• E no intervalo [1, 4]?

Seguindo a definição dada, para uma função ser contínua em um intervalo ela deve ser contínua em todo ponto pertencente ao intervalo.

O ponto $x = 3 \in [1, 4]$ e já vimos que g(x) é descontínua no ponto x = 3, assim, g(x) é descontínua no intervalo [1, 4]. Podemos ver essa descontinuidade no gráfico de g(x).

Observação

Segue a explicação detelhada de como foi construida a função por partes g(x). Em azul estão resentado os comados que precisam ser digitados no SageMath, exatamente daquela maneira, e em preto a explicação.

Código	Significado/Resultado
g= True	A função com nome g está definida
	como "true" (verdadeira).
while g:	Ou seja, enquanto g for verdadeira.
x=int(input("Entre com o valor de x:"))	A variável x é igual à um número inteiro
	"INT" e definimos o valor dela com "INPUT",
	nesse caso entrará o valor de x que
	queremos achar $g(x)$.
	Se $x \leq 3$.
$print("g(\%(x)d) = \%(x)d"\% \{"x": x \})$	Mostre $g(x) = x$, o %(x)d faz com que esse x
	seja o que você deifiniu anteriormente ,ou seja,
	o valor de x no qual queremos achar $g(x)$.
if $(x > 3)$: final = $(x^* 2)$	Se $x > 3$.
	Definimos a variável "final" que calcula x^2 .
$print("g(\%(x)d) = \%(x)d \land 2 "\% "x":x))$	Mostrará $g(x) = x^2$.
$print("g(\%(x)d) = \%(final)d"\% \{"x":x, "final":final\})$	Mostrará $g(x)$ =final, sendo "final"
	a variável que definimos antes como x^2 .
if input("Iniciar novamente? [s]im [n]ao: ") == "n":	Perguntamos se deseja-se calcular $g(x)$ para
	outro valor de x , se a resposta for "n"
	ele definirá g como falsa.
g = False	Definimos g como falsa, logo, não
	queremos mais calcular g .
print (exit)	

Referências

- [1] Stewart, J. (2006). Cálculo, vol. 1, $5^{\underline{a}}$ edição. Editora Thompson.
- [2] BARD, G. V. Sage para Estudiantes de Pregrado. Cochabamba: Sagemath, 2014. Tradução de: Diego Sejas Viscarra. Disponível em < http://www.sage-para-estudiantes.com/ >. Acesso: 17/08/20