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PRESENTATION 

 

 

This thesis is entitled “The early glycotoxin exposure and metabolic programming: 

Inflammation, Oxidative stress and Metabolic dysfunction at adult life” and consists of 2 

scientific articles. 

First a review article entitled “Early AGEing and metabolic diseases: is perinatal 

exposure to glycotoxins programming to adult-life metabolic syndrome?” And then a full 

scientific article entitled “Neonatal methylglyoxal exposure leads wistar rats offspring to 

inflammation, oxidative stress and metabolic dysfunctions at adulthood”and aimed to 

study the physiological effects caused by glycotoxins, in a thorough survey of the existing 

literature, followed by laboratory experiments where the effect of administering a glycotoxin 

precursor, methylglioxal, was evaluated in puppies during the first 2 third of lactation, on 

glycemic and lipid metabolism, pancreatic, hepatic and renal function, in addition to oxidative 

stress and inflammatory profile of offspring in adulthood. 

In accordance with the rules of the Graduate Program in Biological Sciences, the 

articles presented here were written according to the rules of the following journals, 

respectively: 

  

Journal: Nutrition Reviews  

Impact factor: 5,779 

Qualis CAPES (Biological Sciences I): A1. 

 

Journal: Journal of Nutritional Biochemistry 

Impact factor: 4,490 

Qualis CAPES (Biological Sciences I): A1. 



 

RESUMO GERAL 

 

O conceito DOHaD (Developmental Origins of Health and Disease) preconiza que 

distúrbios de ordem ambientais e/ou nutricionais precoces (pré- ou pós-natais) são críticos 

para a manutenção da saúde ou para o surgimento de doenças não comunicáveis nos 

indivíduos na fase adulta. 

As glicotoxinas, ou produtos finais de glicação avançada (AGEs – Advanced 

Glycation End-products) e seus precursores, como o metilglioxal (MG), são formados 

endogenamente e também podem ser comumente encontrados em alimentos processados em 

altas temperaturas e estocados como as e fórmulas infantis, entre diversos outros, e podem 

estar associados a distúrbios nutricionais precoces. Além de aspectos gerais das glicotoxinas, 

como a produção endógena, os mecanismos fisiológicos de detoxificação, como o ciclo das 

glioxalases, fontes exógenas e seu papel no desenvolvimento da síndrome metabólica, o artigo 

de revisão apresentado tem como objetivo discutir as fontes de exposição perinatal às 

glicotoxinas e seu envolvimento nos mecanismos da programação metabólica. Discuti-se 

também o papel da exposição perinatal às glicotoxinas no desenvolvimento da resistência à 

insulina, desenvolvimento do sistema nervoso central, doenças cardiovasculares e 

envelhecimento precoce. Finalmente, o primeiro artigo apresentado discute possíveis 

intervenções que podem prevenir ou reduzir os efeitos da exposição pós-natal a glicotoxinas. 

 O segundo artigo teve como objetivo investigar os efeitos de exposição precoce ao 

MG na programação da prole para disfunção metabólica na vida adulta. Ao nascimento 

(PN1), os animais foram divididos em dois grupos: grupo controle (CO), tratados com salina 

0,9% e metilglioxal (MG), tratado com MG (20mg/kg de peso corporal i.p.) durante as duas 

primeiras semanas do período de lactação. Durante o período experimental, a ingestão de 

alimentar e o peso dos animais foram verificados diariamente e ambos os grupos (CO e MG) 

foram avaliados na idade adulta (PN90). O grupo MG apresentou diminuição do peso 



 

corporal, tecido adiposo e massa hepática e renal. Contrariamente, esse mesmo grupo 

apresentou aumento da ingesta alimentar, além de aumento nos níveis de frutosamina, 

insulina e no índice HOMA-IR, evidenciando resistência à insulina. Além disso, os animais 

MG apresentaram dislipidemia, estresse oxidativo e inflamação.  

Em conclusão, a exposição precoce pós-natal ao MG induz estresse oxidativo e estado 

inflamatório que leva à síndrome metabólica na prole de ratos adultos e aumento do risco de 

doença cardiovascular. Tais resultados sustentam a hipótese de que a lactação é um 

importante período para a programação de saúde ou doença. 

 

Palavras-chave: Programação metabólica; Glicotoxinas; Produtos finais de glicação 

avançada (AGEs); Metilglioxal; Síndrome metabólica.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

GENERAL ABSTRACT 

 

The DOHaD (Developmental Origins of Health and Disease) concept advocates that 

early environmental and/or nutritional disorders (pre- or post-natal) are critical for 

maintaining health or for the emergence of non-communicable diseases in individuals in 

adulthood . 

Glycotoxins, or advanced glycation end-products (AGEs) and their precursors, such as 

methylglyoxal (MG), are formed endogenously and can also be commonly found in foods 

processed at high temperatures and stored as the infant formulas among others, and may be 

associated with early nutritional disorders. In addition to general aspects of glycotoxins, such 

as endogenous production, physiological detoxification mechanisms, such as the glyoxalase 

cycle, exogenous sources and their role in the development of the metabolic syndrome, the 

review article presented aims to discuss the sources of perinatal exposure to glycotoxins and 

their involvement in the mechanisms of metabolic programming. The role of perinatal 

exposure to glucotoxins in the development of insulin resistance, development of the central 

nervous system, cardiovascular diseases and premature aging is also discussed. Finally, the 

first article presented discusses possible interventions that can prevent or reduce the effects of 

postnatal exposure to glycotoxins. 

The second article aimed to investigate the effects of early exposure to MG on the 

offspring's programming for metabolic dysfunction in adulthood. At birth (PN1), the animals 

were divided into two groups: control group (CO), treated with saline 0.9% and 

methylglyoxal (MG), treated with MG (20mg/kg body weight ip) during the first two weeks 

of the lactation period. During the experimental period, food intake and body weight were 

checked daily and both groups (CO and MG) and the animals were assessed in adulthood 

(PN90). The MG group showed a decrease in body weight, adipose tissue and hepatic and 

renal mass. In contrast, this same group showed an increase in food intake, in addition to an 



 

increase in fructosamine, insulin levels and the HOMA-IR index, showing insulin resistance. 

In addition, MG animals showed dyslipidemia, oxidative stress and inflammation. 

In conclusion, early postnatal exposure to MG induces oxidative stress and an inflammatory 

state that leads to metabolic syndrome in the offspring of adult rats and increased risk of 

cardiovascular disease. These results support the hypothesis that lactation is an important 

period for health or disease programming. 

 

Key words: Metabolic programming; Glycotoxins, Advanced Glycation end Products 

(AGEs); Methylglyoxal; Metabolic syndrome. 
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ABSTRACT 

Postnatal (PN) early nutritional disorders are critical for the developmental origins of health 

and disease. Glycotoxins, or advanced glycation end-products (AGEs), and their precursors 

such as the methylglyoxal, which are formed endogenously and commonly found in processed 

foods and infant formulas, may be associated with early nutritional disorders. Besides general 

aspects of glycotoxins such as their endogenous production, exogenous sources and their role 

in the development of metabolic syndrome, this review aims to discuss the sources of 

perinatal exposure to glycotoxins and their involvement in mechanisms of metabolic 

programming. We will discuss the role of perinatal glycotoxins exposure in the development 

of insulin resistance, central nervous system development, cardiovascular diseases and early 

aging. Finally, we discuss possible interventions that may prevent or reduce the effects of 

postnatal exposure to glycotoxins. 

 

Keywords: Metabolic programming; Glycotoxins, Advanced Glycation end Products 

(AGEs); Methylglyoxal; Metabolic syndrome. 
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1. INTRODUCTION 

Developmental origins of health and disease (DOHaD) concept alert to the potential 

associations between a suboptimal foetal and/or postnatal environment with several 

pathologies in the offspring, such as the metabolic syndrome. Several animal models have 

been developed to explore the pathophysiology and mechanisms of developmental 

programming of metabolic syndrome. Features of the cardiometabolic diseases have been 

found in the offspring of diabetic rodents or feeding a high-fat diet or a fructose-enriched diet 

1–5
. High sugar intake is associated with harmful effects such as cardiovascular diseases, 

obesity, insulin resistance and diabetes. In this way, hyperglycemia is related with Advanced 

Glycation End-Products (AGEs), and these glycotoxins are closely related to the installation, 

progression and development of diabetes and its complications 
6–11

. AGEs have also been 

implicated in the deterioration of metabolic homeostasis in obesity, namely the development 

of insulin resistance-associated pathologies such as cardio- and cerebrovascular diseases, non-

alcoholic steatohepatitis and central nervous system disorders including dementia, in both 

adult and pediatric patients 
12,13,22–26,14–21

. Vascular AGEing is associated to oxidative stress, 

with generation of reactive oxygen and nitrogen species 
27–30

, endothelial dysfunction 
31–33

, 

changes in the extracellular matrix 
32

 and in inflammatory factors 
34

. Infant formulas used 

worldwide as a substitute for breast milk have been demonstrated high AGEs levels, thus 

exposing infants to these nutritional contaminants during the postnatal period early in life may 

contribute to the development of cardiometabolic disorders at adulthood 
35–37

.  

This review provides an overview of the current knowledge about the contribution of 

perinatal glycotoxins exposure to metabolic programming and development of metabolic 

syndrome-related pathologies. Here, we emphasize the evidences of increased glycotoxins 

exposure of the foetus in gestational diabetes, the impact of maternal dietary AGE 

consumption during embryonic development, lactation and infant formula feeding on 
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developmental programming of metabolic syndrome and interventions to prevent the 

consequences of their perinatal exposure. 

2. CLINICAL EVIDENCES OF PERINATAL PROGRAMMING FOR ADULT-LIFE 

METABOLIC SYNDROME 

Pregnancy is a critical period for the health of both the foetus and the mother and is a 

sensitive period to environmental disturbances. Several studies established a relationship 

between disturbances in the pregnancy and offspring diseases throughout life 
38–47

. The 

magnitude of the effects depends on the stage of gestation in which the foetus was exposed 

and the nature of the aggressive agent 
41

. It is well established that the tobacco, alcohol, 

distress, nutritional unbalances and other metabolic disorders impact the proper development 

of the foetus in the intrauterine life 
43,45,47–49

. One of the most common gestational disorders is 

the gestational diabetes mellitus (GDM), which is associated with pre-gestational overweight 

and has been implicated in adverse perinatal outcomes such as increased weight-gain during 

the gestational period and high sugar consumption 
42,50,51

. Foetal development is very 

susceptible to diabetes and this condition can promote severe changes in tissues and organs, 

being cardiovascular and neural tube defects the most frequent malformations 
40,43

. Mothers 

with pregestational diabetes mellitus (PGDM) and a poorly controlled hyperglycemia during 

the first trimester have 5-10% possibility to have newborns with a major birth defects and 15-

20% of spontaneous abortion 
52

. On the other hand, GDM is more related with pregnancy 

complications, such as macrosomia, pre and perinatal mortality, than congenital anomalies 
43

. 

The offspring from mothers with PGDM presents increased adiposity and overweigh resulting 

from transplacental passage of maternal glucose and induction of foetal hyperinsulinemia 
43

. 

Pregnant women with GDM were shown to have an increased risk to deliver large gestational 

for age (LGA) newborns, which have higher risk be obese in childhood 
40,53

. 
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Some authors showed that diet composition prior and during pregnancy may have 

impact on the metabolic profile of both mother and newborn, and in children size at birth 
54,55

. 

Nutritional changes may lead to impairment of foetal growth and intrauterine growth 

restriction (IUGR), as well as foetal adiposity, insulin resistance and pancreatic beta-cell 

dysfunction 
56

. A case-control study from Amezcua-Prieto et al. 
55

 suggests that the increased 

consumption of industrial bakery products, pastries and refined sugar products during 

pregnancy is associated to having a small gestational for age (SGA) newborn. In contrast, 

higher consumption of wholegrain cereal and bread is related to a lower risk to deliver a SGA 

infant 
55

. Another cohort study suggests that the daily consumption of artificially sweetened 

beverage during pregnancy has a twofold higher risk to have a child with overweight at first 

year 
57

.Ornoy et al. 
43

 showed that the offspring of GDM mothers have a high frequency of 

overweight, as well as the babies who are breastfeeding from diabetic mothers. In another 

study conducted by Palatianou et al. 
58

 have found increased association of LGA with 

nondiabetic obesity than with type 2 diabetes. On the other hand, LGA infants from diabetic 

mothers (GDM or PGDM) present a height and weight above the 90
th

 percentile as well as 

increased weight gain in the first four months of life 
43,59

. A meta-analysis performed by 

Schellong et al. 
60

 revealed a predisposition to adulthood overweight in LGA infants but not 

in SGA newborns. However, both LGA and SGA have been shown to have a similar risk to 

adulthood diabetes development, following a U-shaped and not a linear relationship 
61

. 

Children SGA born from mothers with PGDM and associated nephropathy are more 

susceptible to prematurity, reduced growth at 3 years old and body weight and height below 

to 50
th

 percentile when compared to children of PGDM mothers without complications. As 

well, SGA individuals who significantly gained weight in early childhood exhibited higher 

risk of developing hypertension and diabetes and also higher coronary heart disease mortality 

in adulthood compared with their age-matched counterparts 
56

. 
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Thus, obesity and type 2 diabetes of the mother affects birth weight and both SGA and 

LGA are associated with increased risk of metabolic impairment and related complications in 

the adult life. Moreover, the presence of diabetic complications in the mother is apparently 

related to an increased risk to the newborn. 

3. METABOLIC EFFECTS OF GLYCOTOXINS ON METABOLIC SYNDROME 

One of the main glycotoxins is methylglyoxal (MG), which may change cell behavior 

through modification of biomolecules, such as proteins and DNA, and consequent formation 

of AGE (reviewed by 
18

). Modification of arginine residues by MG leads to the formation of 

Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1) and argpyrimidine, from the 

imidazolones family, whereas lysine modification leads to methylglyoxal lysine dimer 

(MOLD) and (carboxyethyl)lysine (CEL) formation 
62,63

 reviewed by 
64–66

. Modification of 

aminoacid residues by MG affects circulating (hemoglobin, albumin or lipoproteins), 

extracellular matrix and intracellular proteins (cytoplasmic proteins and transcription factors), 

changing cell behavior and activating inflammatory and death pathways 
67–74

 reviewed by 
18

. 

Moreover, MG was shown to modify proteasome subunits and protein quality control 

pathways (Hsc70, Hsp90 and Hsp27) causing endoplasmic reticulum stress and impaired 

degradation of misfolded proteins 
75–78

. Besides directly modifying protein structure through 

modification of aminoacid residues, MG was also shown to increase oxidative stress, namely 

the formation of superoxide anion 
79–82

, hydrogen peroxide and peroxynitrite 
79,80,83

 in 

different types of cells, including endothelial cells 
84

, rat kidney mesangial cells 
85

, rat 

hepatocytes 
83,86

, blood cells 
80,87

, osteoblasts 
87

 and in rat and mouse neurons 
88–91

. MG was 

shown to induce the depletion of antioxidant defenses, predisposing cells for oxidative 

damage 
79,85,92–96

. Given that MG detoxification systems are GSH-dependent, such 

mechanisms lead to a self-perpetuating cycle of ROS/AGE formation and mitochondrial 

dysfunction 
94

. 
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Extracellular AGEs may change cell behavior through activation of membrane 

receptors, such as RAGE, which is known to recognize two major types of ligands, 

imidazolones (MG-derived) and Nε-(carboxymethyl)lysine (CML) adducts (reviewed by 
97

). 

Upon activation, RAGE triggers intracellular signaling pathways such as NF-kB, involved in 

activation of inflammatory and proliferation/stress signals, as well as generation of oxidative 

stress 
72,98–103

. Inhibition of RAGE was shown to prevent vascular disease in several animal 

models 
98,104,105

. Thus, MG-induced changes in cell behavior have been shown to involve 

several mechanisms, namely through the modification of biomolecules, accumulation of 

misfolded proteins, activation of membrane receptors, generation of oxidative stress, changes 

in transcription factors and activation of inflammatory/stress pathways. 

MG has been implicated in the development of diabetes complications such as 

retinopathy, nephropathy and peripheral neuropathy, given that its levels are increased in 

diabetic patients and insulin-independent cells like endothelial cells, podocytes and neurons 

are more susceptible to hyperglycemia-driven MG formation. Several studies have addressed 

the involvement of MG in the mechanisms governing the development of such pathologies, 

namely endothelial cell senescence and angiogenesis impairment 
67,74,106,107

, podocyte 

effacement and death 
108,109

, glomerular fibrosis 
73,98,102,110

, apoptosis of retinal pericytes and 

retinal pigmented cells 
111–114

, and changes in the nociception and pain stimuli (hyperalgesia) 

115,116
. Moreover, MG has been involved in the pathophysiology of cardio- and 

cerebrovascular diseases. MG was observed to cause structural changes in the blood-brain 

barrier 
117,118

, but to be also involved in other neurodegenerative disorders such as increased 

neurotoxicity 
119,120

, beta-amyloid protein neurotoxic effects 
121,122

, and loss of dopaminergic 

neurons 
123–125

. In the cardiovascular system, it was shown that MG impairs the calcium 

handling between sarcoplasmic reticulum and cytoplasm of cardiomyocytes 
126

, and also 

impacts survival and apoptotic pathways during ischemia 
127,128

, besides angiogenic deficits 
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129
. Features of endothelial dysfunction, hypertension and atherosclerosis have also been 

reported, such as oxidative stress and stiffness of the aorta, impairing elasticity, acetylcholine-

dependent relaxation and NO bioavailability 
33,130–133

, activation of the renin-angiotensin 

system 
134,135

, increased glycoxidation of LDL particles 
136,137

 and increased risk of thrombosis 

and atherosclerosis through platelet hyperaggregation and RAGE activation 
138,139

. 

Moreover, MG has been also implicated in the process of loss of metabolic 

homeostasis itself, namely in the development of beta-cell dysfunction and insulin resistance. 

MG was shown to transiently activate insulin secretion 
140

, but hamper beta-cell survival and 

long-term insulin synthesis and secretion 
141

. In insulin signaling, MG was observed to cause 

a redox-independent inhibition of insulin receptor pathway and GLUT4 translocation in 

muscle cells and 3T3 adipocytes 
9,142,143

. In vivo, MG was observed to cause insulin resistance 

in several animal models 
141,142,144

 but only when supraphysiological doses were used 

(Reviewed by 
18

). Other studies failed to show MG-induced insulin resistance and this was 

only observed in obese animal models 
25,145,146

. Several studies have also shown AGE-induced 

overexpression of inflammatory mediators in the liver 
26,147,148

, but again, hepatic insulin 

resistance was only observed in obese animals 
26

. Such results suggest that glycation may 

have an impact in obesity-associated insulin resistance, possibly through increased depletion 

of antioxidant and detoxifying mechanisms, but has a less dramatic effect in lean models. In 

humans, elevated MG and AGE levels have been reported in diabetic patients and in 

metabolically unhealthy obese (MUO) patients, but no correlation was found between AGE 

levels and impaired glucose homeostasis 
149,150

. Nevertheless, AGE-restricted diets have been 

shown to improve insulin sensitivity in normal, overweighed and diabetic patients, showing 

the link between increased glycoxidative stress and impaired metabolic homeostasis 
151–153

. 

In summary, MG and MG-derived AGE are involved in several metabolic syndrome 

and diabetes-related pathologies, but their progressive accumulation in biological systems 
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may be also associated with impaired lipid handling and increased susceptibility to oxidative 

damage, which may contribute to the development of insulin resistance in adipose tissue and 

liver in obesity and predispose to the MUO phenotype. Together with increased beta-cell 

damage, such mechanisms are likely to contribute to the progressive deterioration of 

metabolic homeostasis and development of prediabetes and type 2 diabetes. Importantly, the 

impact of early glycotoxin exposure since the perinatal period is completely unknown, 

although recent evidences have suggested that such exposure may increase the risk of 

metabolic dysregulation and development of diabetes-like complications in the adult life. 

4. SOURCES OF PERINATAL GLYCOTOXINS EXPOSURE 

4.1. In utero exposure to AGE during the embryonic development 

GDM-related hyperglycemia was shown to increase serum MG and AGEs, such as 

CML. Raised serum AGEs are associated with insulin resistance, oxidative stress, 

cardiovascular diseases and diabetes comorbidities in normal individuals and pregnants 
33,154–

158
. Besides hyperglycemia, maternal AGEs may also derive from dietary absorption given 

that industrialized foods are very rich in AGEs 
51

 and such AGEs are transferred to the 

embryo through the placenta 
159

. Accordingly, Konishi et al. 
160

 reported the impairment of 

implantation and placentation, and placenta function by the accumulation of AGEs, through 

RAGE activation, oxidative stress, low hCG levels and apoptosis in human first trimester 

trophoblasts. Similarly, Hao et al. 
161

 and Haucke et al. 
162

 reported the adverse effects of 

GDM through raised AGE levels during embryonal development, which promotes RAGE 

activation, inflammation, and AGE accumulation in the embryo. This environmental stress 

may collaborate to embryo resorption, foetus malformation or preterm birth. On the other 

hand, knockout of RAGE in pregnant diabetic rats prevents embryonic dysmorphogenesis, 

mitigating the effects of AGEs in the foetus 
163

. Elevated sugar-sweetened soft beverages and 
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refined carbohydrates consumption during pregnancy are strongly correlated with offspring 

congenital heart defects, SGA newborns and increased risk of offspring overweight 
55,57,164

. 

Such data reinforce the role of AGEs exposure on the diabetic embryopathy and its 

implications to proper foetus development, which are widely related to developmental origins 

of diseases at later stages of life. 

4.2. Exposure during lactation and digestion and intestinal absortion of glycotoxins 

in newborns through infant formulas 

The period of lactation is of extreme importance to the neonate development and 

maturation of different organs and systems, being the breastmilk enough to completely supply 

the neonate necessities. Given the abundance of evidences regarding the importance of 

breastfeeding in infant health, the World Health Organization recommends exclusive breast 

feeding until 6 months of life and complementary until 2 years old 
165

. Breastfeeding was 

shown to prevent the incidence of diseases such as diabetes, multiple sclerosis and celiac 

disease 
166

.  

More than just a source of calories, breast milk is an important source of bioactive 

molecules such as antibodies, oligosaccharides and hormones, which exert beneficial effects 

in the infant’s health and development 
166,167

. Insulin may be found in milk and plays an 

important role in the process of gut maturation , decreasing permeability to macromolecules 

168
.  

Human studies have found that the neonatal intake of breastmilk from diabetic 

mothers was related to overweight and glucose intolerance 
169

. There are evidences that 

breastmilk may also be a source of glycotoxins in the neonate period. Mericq et al. 
159

 have 

shown a correlation between blood AGE levels of lactating mothers and their infants, raising 

the question whether maternal diet during lactation influences infant glycoxidative stress 
159

. 

Even in other diseases, such as beriberi, when occurs an accumulation of glucose 
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intermediaries, such as MG, it was observed an increased concentration of these substances in 

breastmilk 
170

. Also, it was observed that infants whose mothers smoked during pregnancy 

and lactation have increased accumulation of AGEs in their skin, indicating that the 

transmission of glycotoxins from the mother to the child may also occur through breastmilk 

35
. 

An animal study has found that cows with a high AGEs diet presents increased 

glycated compounds in their milk, such as MG-H1 
171

. A AGE diet during pregnancy and 

neonatal period prevented the development of type 1 diabetes in the offspring of NOD mice 

172
. In this regard, our group has previously demonstrated that oral administration of MG to 

breastfeeding rats increased the content of the glycation intermediary fructosamine in their 

milk, which was associated to the development of a diabetic phenotype in offspring during 

adult life 
173

. 

Another source of glycotoxins during the perinatal period are infant formulas, given 

that many have high AGEs levels , reaching almost 35-fold higher concentration of CML than 

breastmilk of healthy mothers 
36,174

. AGEs are formed in heat-treated foods, as a product from 

Maillard reaction, or non-enzymatic browning. In fact, traditional methods of cooking which 

use high temperature (100 to 250 °C), such as frying, baking and grilling, contribute to a 

higher degree of AGE formation, being the foods rich in reducing sugars and proteins more 

prone to the formation of this compounds 
175–177

. For instance, grilled beef presents five times 

higher AGEs levels (5,963 kU/100 g) than boiled one (1,124 kU/100 g) 
178

. Infant formulas 

are rich in both sugars and proteins, and their industrial production includes heat exposition. 

In fact, it was demonstrated that hydrolysate infant formulas, rich in whey, presents higher 

concentration of CML since whey proteins are subjected to great heat treatment during its 

manufacturing 
179

.  
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A positive correlation between formula AGEs and increased circulating levels and 

urinary excretion of AGEs was found in newborns, indicating it absorption 
174,180

. In an 

animal model of IUGR, animals that were fed high AGEs formula during suckling, presented 

accumulation of CML in renal tubular cells, associated with increased protein oxidation and 

expression of pro-inflammatory and apoptotic factors 
181

. IUGR piglets present increased 

oxidative stress and the early consumption of high AGEs formula during suckling programs 

these animals to the development of liver oxidative stress in adult life by impairment of 

antioxidant defenses 
182

. Some authors discuss that the high consumption of glycation 

compounds by infant formulas during early life may predispose to the development of 

oxidative stress and diseases later in life, such as diabetes 
159,183

. It was observed that 

increased maternal AGEs levels were correlated to the infant AGEs levels, which may 

precondition the young to high oxidative stress, inflammation and insulin resistance 
159

. A 

more recent investigation observed decreased insulin sensitivity in AGEs-rich formula-fed 

infants than those fed only breastmilk, although the specific AGEs contribution to decreased 

insulin sensitivity was not clear since no differences were observed to infants fed a low-AGEs 

formula 
184

. 

The impact of neonates’ exposition to glycotoxins is still controversial. The influence 

of maternal diabetes in milk composition during breastfeeding is not well understood, such as 

the role of MG and AGEs in the neonatal health and programming to diseases during adult 

life. 

In the last years, the role of dietary AGEs in the development of metabolic diseases 

has been deeply discussed, but an important question remains to be elucidated: Are dietary 

AGEs digested and absorbed? In fact, a strong correlation between AGEs intake and its levels 

in the plasma has been demonstrated 
185,186

. Similarly, evidences from human studies shown 

that dietary restriction of AGEs decreases plasma concentration and their renal excretion 
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152,187–189
. It was shown in animals fed a 

14
C labeled AGEs-rich diet, as well as in humans, that 

10% of dietary AGEs are absorbed 
187,190

. Indeed, the glycation compound Pirralyne, as well 

as major AGEs such as CML, CEL and MG-H1, were shown to be absorbed in the form of 

dipeptides via PEPT1 transporter in intestinal cells 
191,192

. 

Regarding the AGEs digestion, it was shown that glycation of dairy protein by MG or 

glyoxal, may decrease their digestibility by proteases, mainly due to cross-linked AGEs. On 

the other hand, non-cross linked AGEs, such as CML, CEL and MG-H1 are more prone to be 

absorbed by intestinal epithelial cells 
193

. High molecular-weight AGEs are harder to digest 

and absorb, turning them more able to advance in the intestinal tract and interact with the 

colonic microbiome 
193,194

. In fact, it has been demonstrated that dietary AGEs may influence 

the microbiome composition. In rats, dietary AGEs reduced the diversity of microbiota, 

decreasing short-chain fatty acids-producing bacteria and damaging colonic epithelial barrier 

195
. Human studies also report the interaction between dietary AGEs and changes in gut 

microbiome composition, highlighting the importance of this interaction to human health 

196,197
. However, few articles have addressed the mechanisms of AGEs absorption in adults 

and much less is known about this process in the neonatal gut. In fact, the newborn gut is not 

totally mature, being shown that the epithelial gut barrier of newborns is still permeable to the 

passage of macromolecules, such as hormones, carbohydrates and peptides 
168,198

. Thus, the 

newborn gut may be more complacent to the passage of glycotoxins, turning the pup more 

susceptible to the absorption and accumulation of AGEs and their precursors. In fact, it was 

shown that newborn rats are more susceptible to the toxic effects of oral delivered MG, since 

the lethal dose is almost 4 times lower than in an adult male rat (531 mg/kg vs 1990 mg/kg) 

199
. As previously discussed, exposition to increased AGE levels by infant formulas or via 

breastmilk may be of great importance to health and development of the neonate. In general, 

the mechanisms of AGEs absorption, digestion and interaction with the microbiome are not 
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well understood and much less is known about the neonatal period, showing that more studies 

are necessary to clarify these mechanisms. 

5. EFFECTS OF PERINATAL AGE EXPOSURE ON PROGRAMMING OF 

METABOLIC SYNDROME, CARDIOVASCULAR DISEASES AND EARLY 

AGING 

Although several studies have reported high perinatal exposure to AGEs during 

embryonic development and lactation, little is really known about their effects in metabolic 

programming and in increasing the risk of developing certain diseases in the adult life. 

Moreover, the consumption of AGE through milk or infant formulas was shown to disturb 

metabolic homeostasis in newborns, being associated to pancreatic dysfunction, 

cardiovascular and central nervous system diseases. Exposure of rat lactating females to high 

dietary levels of sucrose or high-fructose corn syrup was observed to lead to increased FFA 

levels, adiposity and liver fat in the offspring at weaning 
200

. Accordingly, Csongová et al. 
201

 

have recently shown increased predisposition for weight gain and insulin resistance in the 

progeny of females fed a AGEs-rich diet during pregnancy, and Francisco et al. 
173

 have 

shown a similar impact of increased maternal exposure to MG during lactation, conducing to 

impaired lipid profile and adiposity in the offspring.  

In the study of Francisco et al. 
173

 authors have also shown decreased beta-cell 

function in the offspring. Accordingly, using type 1 diabetic NOD mice, two different studies 

have shown the impact of perinatal AGE exposure of beta-cell function. Peppa et al. 
172

 have 

shown that low-glycotoxin foetal and neonatal environments through maternal AGE dietary 

restriction decreased T-cell inflammatory activity in the pancreas, resulting in lower glycemia 

and increased survival. Accordingly, Borg et al. 
202

 have shown deteriorated beta cell function 

in the progeny of NOD females exposed to increased dietary AGE levels during pregnancy 

and lactation. 



33 

 

The impact of perinatal AGE exposure to other pathologies is less studied, although a 

few studies have implicated perinatal AGEing in the development of cardiovascular diseases 

and central nervous system disorders. Vascular diseases in the adult life are known to be 

associated to increased glycoxidative stress and increased prenatal AGE exposure was also 

shown to result in early cardiac changes. Embryos of diabetic female rats were observed to 

accumulate higher levels of CML, which was associated to lower VEGF levels 
203

. As well, 

AGE levels were increased in the heart of newborns of STZ-induced diabetic dams, being 

associated with increased oxidative stress and inflammatory markers 
204

. 

Recent reports have suggested impairment of AGE-RAGE axis in preterm birth. 

Chiavaroli et al. 
205

 have shown decreased levels of soluble RAGE and endogenous secretory 

RAGE in overweigh prepubertal children who were LGA or SGA, being correlated with 

insulin resistance. In the central nervous system, increased hippocampal RAGE expression 

was observed in the offspring of STZ-induced diabetic female rats, which was associated with 

increased excitability and behavioral changes 
206

. Increased glycation during gestational 

diabetes was also recently implicated in impaired neural development, namely in the decrease 

of cortical neural precursor cells 
207

. Authors have shown that glyoxalase pathway disruption 

during the embryonic development leads to premature neurogenesis, depletion of cortical 

neural precursor cells and behavioural changes, which was also found in the offspring of 

diabetic mothers 
207

. 

Thus, high AGE levels in mothers can predispose the progeny to impaired metabolic 

homeostasis and recent data suggest the definition of cut-off values for mother glycated 

albumin levels during pregnancy in order to prevent neonatal complications 
208,209

. 
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6. INTERVENTIONS TO PREVENT PERINATAL AGE EXPOSURE AND 

METABOLIC PROGRAMMING 

As previously described, the exposition to glycotoxins during the perinatal life may 

occur in utero, since AGEs are able to cross the placental barrier and impair foetal 

development, activating the RAGE axis and increasing oxidative stress, which may underlie 

the embryopathy related to GDM. Furthermore, the exposition during lactation may occur via 

breastmilk since maternal AGEs levels may influence its concentration in the milk. Also, 

infant formulas and complementary foods constitute an important source of AGEs in neonatal 

life. Regarding gestational diabetes, it is well established that uncontrolled diabetes increases 

MG and AGEs circulating levels, exposing de embryo to it. Thus, the first approach to 

prevent MG and AGEs exposure, should be a proper glycemic control. Metformin was 

suggested as a efficient and safe drug for GDM management 
210

. Besides improving insulin 

resistance and decreasing hepatic gluconeogenesis, metformin may directly react with and 

scavenge MG, preventing the formation of MG derived AGEs such as MG-H1 
211,212

. During 

lactation, the same interventions may be taken in order to treat maternal diabetes, thus 

preventing the transmission of glycotoxins from mother to the infant through breastmilk. 

As previously described, one of the main sources of external glycotoxins is the diet. 

Since maternal AGEs may be transmitted to the infant via placenta or breastmilk, the 

consumption of ultra-processed AGEs-rich foods should be discouraged since they present 

high levels of AGEs. The intake of foods in natura should be encouraged, such as fresh 

vegetables, fruits and meats as part of balanced diet. Attention should be taken in the cooking 

process, avoiding high temperature methods such as frying and grilling, favouring low 

temperature methods such as boiling. 

AGEs are largely found in infant formulas, contributing to increase the pool of AGEs 

in the infant. As recommended by WHO, breastfeeding must be exclusive during the first 6 
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months of life 
165

. In this sense, infant formula must be implemented only when breastmilk 

was not available, thus avoiding unnecessary uses. As previously described, the industrial 

process to obtain whey protein lead to a higher degree of AGEs formation, therefore the 

addition of whey protein should be avoided. The use of milk from different animals, such as 

goat should be encouraged, since their amino acidic profile is more similar do the human 

milk, removing the need for the addition of whey protein, thus reducing the amount of AGEs 

in the final product 
179

. 

Thus, some interventions may be taken to prevent AGEs exposition during perinatal 

life, including proper glycemic control in diabetic mothers and the adoption of a balanced diet 

low in ultra-processed foods. Quit smoking may also be an important intervention, since 

smoking during lactation may increase AGEs levels in breastmilk 
35

. The consumption of 

infant formulas, rich in AGEs may be taken with caution and the industry should be 

encouraged to develop infant formulas with low AGEs levels.  

7. FUTURE CHALLENGES  AND CONCLUSION 

More studies are needed to understand the mechanisms underlying the effects of 

perinatal exposure to glycotoxins, in order to prevent the comorbidities in adult life related to 

the embryo and infant exposure to adverse conditions such as diabetes and diet rich in AGEs. 

In the clinical practice, the advice of pregnant and lactating women about the importance of 

the diet and glycemic control is essential. In order to study the long-term effects of 

intrauterine and postnatal exposure to glycotoxins in humans, a long follow-up of the 

offspring and mother is required given that the studies about this issue are currently scarce. 
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FIGURE CAPTION 

 

Figure 01. 

Scheme of main sources and potential mechanisms by which exposure to glycotoxins during 

perinatal life (eg. gestation and lactation), may potentially program to cardiometabolic 

diseases during adult-life. 
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ABSTRACT 

Methylglyoxal (MG) is a precursor for the generation of endogenous AGEs that are 

commonly found in the processed foods and infant formulas due to industrial processing 

applied in their production. Postnatal (PN) early nutritional disorders are critical for the 

developmental origins of health and disease. This work aimed to investigate the effects of 

early MG exposure in progeny programming for metabolic dysfunction later in life. At 

delivery (PN1), the animals were divided into two groups: control group (CO), treated with 

saline and methylglyoxal group (MG), treated with MG (20 mg/kg of BW; i.p.) during the 

first two weeks of the lactation period. Throughout experimental period, food intake and body 

weight were evaluated daily. We evaluated CO and MG offspring at adulthood. At PN90 MG 

treatment decreased body weight, adipose tissue, liver and kidney masses. Differentially, MG 

increased food intake, blood fructosamine, insulin levels and HOMA-IR, evidencing insulin 

resistance. Besides, MG animals presented dyslipidemia, increased oxidative stress and 

inflammation. Likewise, MG offspring showed steatosis and perivascular fibrosis in the liver, 

increased in adipocyte, pancreatic islets, glomerular area and pericapsular fibrosis, but 

reduced capsular space. In conclusion, postnatal early MG exposure induces oxidative stress 

and inflammatory state leading to morphological disruptions. In this sense, lactation is an 

important trigger for health or disease programming. 
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1. INTRODUCTION 

Modern western diets are composed of highly processed foods that are rich not only in 

fat, sugar and salt but also contain potentially pathogenic compounds known as advanced 

glycation end products (AGEs). In addition, food preparation methods that uses high 

temperatures (frying, baking, grilling) potentiate the production of AGEs [1, 2]. 

Methylglyoxal (MG) is a highly reactive dicarbonyl compound, being the important 

precursor in the formation of AGEs, playing an important role in its synthesis [3, 4]. 

Specifically, MG originates as a byproduct of glycolysis [3, 5], in a non-enzymatic reaction, 

by degradation process of glyceraldehyde-3-phosphate and dihydroxyketone-posphate, 

intermediates of the glycolytic pathway [3], may also originate in specific reactions on lipid 

metabolism [6, 7]. 

In physiological conditions, endogenously formed MG is metabolized, detoxified and 

converted into D-lactate by the glyoxalase system [8]. This system was first described by 

Darkin and Dudley in 1913, being identified in tissues such as pancreas, liver, muscle tissue, 

heart, kidney, blood, spleen and brain [9]. In this sense, glyoxalase system is a critical defense 

mechanism against the glycation of proteins, lipids and nucleic acids [10-20]. 

Postnatal (PN) early environmental and nutritional disorders are critical for the 

developmental origins of health and disease. Clinical and experimental studies have 

demonstrated that acute and chronic effects of these disturbances on growth and metabolism 

in the progeny, with long-term consequences [21-27]. There is a great interest in the possible 

adverse human health outcomes associated with exposure to chemical products present in 

common diet that leads to development of chronic non-communicable diseases, such as 

obesity, diabetes and hypertension. Several works evidenced that these metabolic diseases can 

be “programmed” during critical stages of development, such as pregnancy and lactation [26, 

27]. 

Studies have shown that different types of stress during lactation can induce metabolic 

programming, leading to obese phenotype in adult offspring. In this way, maternal under- or 

overnutrition during PN early period promotes deleterious metabolic outcomes in the 

offspring [28, 29]. Besides, studies have been demonstrated that PN early overnutrition rat 

offspring by small litter (SL), is an animal model of obesity during suckling period. SL 

offspring show increased body mass from the seventh postnatal day onward, associated with 

development of the metabolic syndrome from weaning (PN21) until adulthood [30]. Further, 

SL rats show hyperphagia, hypothalamic leptin resistance and hepatic insulin resistance 

associated with oxidative stress in the liver [31, 32]. On the other hand, it is very important to 
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note that some studies have been shown an expressive protective effect of breastfeeding 

against obesity and diabetes in later life [33-35]. Recently, our group showed that cross-

fostering during lactation normalized body weight, food intake and leptin signaling in the 

offspring from monosodium L-glutamate (MSG)-obese dams suckled by lean dams [36]. 

These findings show the great importance of adequate nutrition in the lactation period, in 

addition to describing this phase as a "programming window". 

 However, it is important to emphasize, that infant formulas are used worldwide as an 

important substitute for breast milk. Unfortunately, studies have demonstrated that infant 

formulas exhibit high levels of MG and AGEs [37-39]. In this sense, exposing infants to these 

nutritional contaminants during PN early in life contributes to the development of 

cardiometabolic disorders at adulthood.  

 Recently, we demonstrated that maternal treatment with MG leads to dyslipidemia and 

disruption on glucose homeostasis in adult rat offspring, programmed the adult offspring to 

present type 2 diabetic phenotype [40]. Nevertheless, we cannot attribute the effects observed 

in the aforementioned work to the direct effect of MG that may have passed through the milk. 

Thus, considering that infant formulas contain MG, it is important to evaluate the direct effect 

of MG administration during suckling period on the offspring. However, few studies have 

shown the effects of offspring MG exposure during PN early in life. Thus, our hypothesis is 

that the offspring MG exposure, such as present in infant formulas, in the first two weeks of 

lactation, leads to homeostasis impairment in adult life. Thereby, our aim was to evaluate 

long-term effects of postnatal early MG exposure on metabolic parameters in adult rat 

offspring. 

 

2. MATERIALS AND METHODS 

 

2.1. Ethical approval 

The handling of animals and experimental procedures were done according to the rules 

of National Council of Animal Experiments Control (CONCEA) and the Brazilian Society of 

Science in Laboratory Animals (SBCAL) and approved by the Ethics Committee on Animal 

Use of Universidade Estadual de Maringa – CEUA/UEM (protocol number 3830171215). 

 

2.2. Experimental design and treatment 

Wistar rats (70-day-old) were housed in the Animal Facility of the Laboratory of Cell 

Secretion Biology, Department of Biotechnology, Genetic and Cell Biology of State 
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University of Maringa, in polypropylene cages (45 x 30 x 15 cm) maintained on a 12:12h 

light- dark cycle (0700 lights on) and controlled temperature (22.0 ± 2°C). After one week of 

adaptation, the animals were mated in a ratio of three females (n = 24) to each male (n = 8). 

Pregnant rats were accommodated in individual cages throughout the pregnancy and nursing 

period. At delivery (PN1), animals were divided into two groups: control group (CO; n = 48) 

offspring treated with saline (0.9 % NaCl, 1 ml/kg of BW i.p.) and MG group (MG; n = 48) 

offspring treated with MG (20 mg/kg/day of BW i.p., Sigma-Aldrich
®
, São Paulo, São Paulo, 

Brazil). Litter size was standardized for 8 pups per mother (preferentially male) to maximize 

lactation efficiency. Treatment started at delivery and occurred at 04:00 - 05:00 p.m. 

throughout the first two weeks of the suckling period. From PN14 until weaning the offspring 

remained with their mothers who received standard chow (Nuvital
®
, Curitiba, Paraná, Brazil) 

and had unlimited access to food and water throughout lactation period. Throughout the 

experimental period food intake and BW were evaluated daily. 

 

2.3. Experimental procedures 

At weaning, male offspring were housed in polypropylene cages (3 – 4 rats per cage), 

under same conditions of their mothers. The offspring from both groups received standard 

chow (Nuvital
®
, Curitiba, Paraná, Brazil), and had unlimited access to food and water until 

PN90. Body weight was evaluated throughout experimental period. At PN90 batch offspring 

(n = 12 – 15 / group) were 12-h fasted, anesthetized with sodium thiopental (45 mg/kg of BW, 

i.p., Thiopentax
®
, Cristália, Itapira, São Paulo, Brazil) and euthanized for blood, WAT, liver, 

pancreas and kidney sample collection. For each experimental procedure, offspring from least 

three litters per group were used to avoid litter effects, as previously described [41, 42]. 

 

2.4. Intravenous Glucose Tolerance Test (ivGTT) 

At PN90 other batch of adult offspring (n = 10 – 12 / group), from both experimental 

groups, were anesthetized (ketamine – xylazine, 75 mg + 15 mg/kg of BW, i.m.) and then 

submitted to the implantation of a silicone cannula (Silastic
®
, Dow Corning, Midland, MI, 

USA) in the right jugular vein for intravenous glucose tolerance test (ivGTT). The animals 

were overnight fasted and then ivGTT was performed in conscious rats, as previously 

described [43]. Blood samples were centrifuged at (10,000 rpm for 5 min) for plasma 

collection and stored at -20 ºC for subsequent quantification of glucose and insulin. Animals 

used for the ivGTT were not used in any other experimental procedures. 

 



62 
 

2.5. Biochemical Analyses 

Blood samples were centrifuged (10,000 rpm for 5 min) and plasma was used for the 

measurements of glucose, total cholesterol, HDL cholesterol, triglycerides and fructosamine 

by enzymatic-colorimetric method with specific commercial kits (Gold Analisa
®
, Belo 

Horizonte, Minas Gerais, Brazil), according to the manufacturer’s instructions [40, 44]. The 

LDL cholesterol was calculated according to the Friedewald equation: LDL = Total 

cholesterol − (HDL + triglycerides/5) [45]. HOMA-IR was calculated using the formula: 

serum insulin (mmol/L) × (blood glucose (mmol/L)/22.5 [46]. 

 

2.6. Radioimmunoassay 

Plasma insulin was measured by radioimmunoassay in gamma counter (Wizard2 

Automatic Gamma Counter, TM-2470, PerkinElmer
®
, Shelton, CT, USA). It was used as 

standard human insulin and anti-rat insulin antibody (Sigma-Aldrich
®
, St. Louis, MO, USA) 

and recombinant human insulin labeled I
125

 (PerkinElmer
®
, Shelton, CT, USA). The intra-

assay coefficients of variation were in the range 8–10 %. The limit of detection was 0.006 

ng/ml [48]. The measurements were taken in a single assay. 

 

2.7.  Histological preparations 

 Retroperitoneal white adipose tissue (rWAT), liver, kidney and pancreas samples were 

fixed in 10% formalin and embedded in histological paraffin. Nonserial histological sections 

(5 µm thick) were performed using a Leica RM2145 microtome (Leica Biosystems, 

Richmond, USA). rWAT, liver and pancreas sections were stained with hematoxylin and 

eosin. Kidney sections were stained with Picrosirius Red and counter-stained with 

Hematoxylin. Digital images (TIFF 24-bit color, 2560 x 1920 pixels) were obtained with a 

light microscope (Olympus BX41, Tokyo, Japan) coupled to a QColor 3 Olympus camera 

through 40X objective lens. 

 

2.7.1. Morphometric adipose tissue analysis 

Adipocytes area were measured using 20 digital images (×400 magnification) from 

each animal (n = 5 animals/group). Analyses were performed using Image-Pro Plus 4.5      

software (Media Cybernetics, Silver Spring, MD, USA). 
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2.7.2. Morphologic liver analyses 

 Cross sections of the liver were performed to analyze the percentage of steatosis. 

Stereological analysis was performed, with a mesh of 594 points, using the Image-Pro Plus 

software (version 6.0, Media Cybernetics, São Paulo). The mean and standard error of mean 

were calculated and the results were compared between groups. 

 

2.7.3. Morphologic kidney analyses 

 Coronal sections, where glomeruli with well-defined renal capillaries can be seen, 

were used to assess the glomerulus area and capsular space. For analysis of glomerulus count 

by area, 3 micrographs per field of each animal were used and then the count was performed, 

the result was expressed in number/field. The analysis was performed using the ICY software 

(Institut Pasteur, Paris, France. <http://icy.bioimageanalysis.org/>), and the mean and 

standard error of mean of each structure, per animal, were calculated and the results of the 

glomerular area and capsular space were expressed in µm², and compared between groups. 

 

2.7.4. Morphometric endocrine pancreas analyses 

Analyses of the pancreatic islet area were performed using 20 digital images (×400 

magnification) from each animal (n = 5 animals/group). Analyses were performed using 

Image-Pro Plus 4.5 software (Media Cybernetics, Silver Spring, MD, USA). 

 

2.8. Biochemical assays of Oxidative Stress and Myeloperoxidase 

Liver, kidney and pancreas samples were collected, fractionated, and processed for 

evaluate the biochemical markers of oxidative stress and inflammatory parameters. After 

being weighed, tissue portions were homogenized separately in 200 mM potassium phosphate 

buffer (pH 6.5). Part of the homogenate was used for quantification of reduced glutathione 

(GSH) levels. The other part was centrifuged for 20 minutes at 9.000 g, and the supernatant 

was used for catalase (CAT), superoxide dismutase (SOD), and lipid hydroperoxide (LOOH) 

measurements. The precipitate was used for analysis of the myeloperoxidase enzyme activity 

(MPO). The biochemical assays  were performed as previously described [49]. 

 

2.8.1. Non-protein sulfhydryl groups levels (GSH) 

Tissue GSH levels were determined according to the adapted method of Sedlak and 

Lindsay [50]. The reaction was performed in a 96-well plate containing the supernatant and 

0.4 M TRIS-HCL buffer (pH 8.9). The reaction was started by the addition of 5,5'-dithiobis-2-
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nitrobenzoic acid (DTNB). Readings were performed at 212nm using a spectrophotometer. 

Individual values were interpolated based on a GSH standard curve and are expressed as μg of 

GSH/g of tissue. 

 

2.8.2. Catalase enzymatic activity (CAT) 

CAT enzymatic activity was performed as previously described [49]. The supernatant 

was homogenized in potassium phosphate buffer (pH 6.5). The reaction was performed in a 

96-well plate containing 5mM Tris/EDTA Buffer (pH8.0), 30% hydrogen peroxide and 

distilled water. Readings were performed at 240nm using a spectrophotometer. 

 

2.8.3. Superoxide dismutase enzymatic activity (SOD) 

The enzymatic assay for SOD is based on the ability of SOD to inhibit the 

autoxidation of pyrogallol [51]. Readings were performed at 405 nm using a 

spectrophotometer. The results are expressed as U of SOD/mg of protein. 

 

2.8.4. Lipid hydroperoxide levels (LOOH) 

 Lipid hydroperoxide (LOOH) levels was determined, as previously described [52]. 

Readings were performed at 560nm using a spectrophotometer. LOOH concentrations were 

determined using an extinction coefficient of 4.3 mmol/mg, and the results are expressed as 

mmol/mg of tissue. 

 

2.8.5. Myeloperoxidase enzyme activity (MPO) 

The precipitate from liver, kidney and pancreas centrifugation were resuspended in 

80mM potassium phosphate buffer containing 0.5% hexadecyltrimethylammonium (HTAB). 

The reaction was performed in a 96-well plate using tetramethylbenzidine (TMB). Enzymatic 

activity was determined at 620 nm using a spectrophotometer. The results are expressed as 

units of optical density (OD)/min/mg of protein. 

 

2.9. Statistical analyses 

Statistical analysis of the data and the construction of the graphics were performed 

using GraphPad Prism
®

 version 6.01 (GraphPad software, Inc., La Jolla, CA, USA). All data 

were submitted to D'Agostino-Pearson omnibus K2 normality test and analyzed using 

unpaired Student's t test. Results were expressed as the mean ± standard error of means 

(SEM) and p<0.05 was considered significantly different. 
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3. RESULTS 

 

3.1. Effect of postnatal early MG exposure on body composition and food intake 

 MG offspring presented less body weight from PN10 until PN90-day-old, compared 

with the CO offspring (p<0.05; Fig. 1A – 1D). After weaning, MG offspring were 

hyperphagic, compared to CO offspring (p<0.05; Fig. 1E - 1H). MG treatment decreased 

naso-anal length (p<0.01; Fig. 1I). In addition, MG group had 2-fold (p<0.0001; Fig. 1J), 37% 

(p<0.01; Fig. 1K) and 5-fold (p<0.0001; Fig. 1L) less periepididymal, retroperitoneal and 

mesenteric fat mass, respectively as compared to CO. In addition, they presented adipocytes 

with approximately 2-fold size than the CO group (p <0.0001; Fig.1M and 1N). 

 

3.2 Effect of postnatal early MG exposure on glucose homeostasis and lipid profile 

 Figure 2 illustrates the effect of postnatal early MG exposure on glucose homeostasis 

of rat offspring. Plasma glucose did not change during the ivGTT as well as in blood fasting 

glucose, compared to CO group (Fig. 2A, 2B and 2E). However, animals from MG group 

showed increased plasma insulin levels at 0, 5, 15 and 30 min, during the ivGTT (p<0.05; Fig 

2C) leading to one-fold greater AUC in these animals, when compared with CO group 

(p<0.01; Fig. 2D). We also observed higher basal insulin levels (57%) and increased HOMA 

index (50%) in MG offspring (p<0.05; Fig 2F and 2G). Besides, blood fructosamine was 

higher in the MG group (+9%; p<0.05; Fig 2H). 

 In addition, Figure 2 shows the lipid profile of MG offspring in adult life. Postnatal 

early MG exposure did not change total cholesterol (Fig 2I). However, HDL-cholesterol and 

triglycerides were reduced in the MG group compared with the control group (p<0.01; Fig. 2J 

and 2K) besides showed higher LDL-cholesterol (p<0.001; Fig. 2L). 

 

3.3 Effect of postnatal early MG exposure on liver oxidative stress, inflammation and 

metabolism  

 As shown in Fig. 3, adult MG offspring presented lower liver mass (p<0.01; Fig. 3A). 

Significant increases in the enzymatic activity of SOD (p<0.01; Fig. 3B) and CAT (p<0.05; 

Fig. 3C) were observed in the liver in MG compared to CO group. A significant decrease in 

GSH level was observed in the liver of MG, compared with that in the CO (p<0.05; Fig. 

3D).That is why, liver LOOH levels was greater in MG than CO group (p<0.01; Fig. 3E) as 

well as the MPO activity (p<0.0; 1Fig. 3F). In addition, MG group showed elevated levels of 

hepatic steatosis and perivascular fibrosis (p<0.05; Fig. 3G – 3J). 
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 3.4 Effect of postnatal early MG exposure on kidney oxidative stress, inflammation and 

metabolism  

 As shown in Fig. 4, adult MG offspring showed lower kidney mass (p<0.05; Fig. 4A). 

Significant increases in the enzymatic activity of SOD (p<0.001; Fig. 4B) and CAT (p<0.01; 

Fig. 4C) were observed in the kidney from MG compared to CO group. As depicted in Fig. 

4D, renal GSH levels was lower in MG than CO group (p<0.05) and a significant increase in 

LOOH level was observed in the kidney from MG, compared with that from CO (p<0.05; Fig. 

4E) besides MPO activity was increase in MG group when compare to CO group (p<0.01; 

Fig. 4F).  

 Regarding to glomerulus, we did not found any difference between the groups (Fig. 

4G) but glomerular area in MG group is lager then the CO group (p<0.05; Fig.4H) with 

reduced capsular space (p<0.01; Fig. 4I). In addition, MG animals presented highest 

pericapsular fibrosis (p<0.01; Fig. 4J and 4K). 

 

3.5 Effect of postnatal early MG exposure on pancreas oxidative stress, inflammation and 

islet area  

 There is no difference in pancreas weigh between the groups (Fig. 5A). However, an 

increase in the enzymatic activity of SOD (p<0.05; Fig. 5B) was observed in MG compared to 

CO group. Still, pancreas GSH levels was lower in MG than CO group (p<0.05; Fig. 5C) and 

a significant increase in LOOH level was observed in the pancreas of MG, compared with that 

in the CO (p<0.05; Fig. 5D) with higher MPO activity (p<0.001; Fig. 5E) and larger area in 

the islet pancreatic (p<0.01; Fig. 5F and 5G).  

 

4. DISCUSSION 

 

In this manuscript, we demonstrated that PN early MG exposure, during first two 

thirds of lactation, leads to development of metabolic syndrome, with glycemic and lipid 

dyshomeostasis. To evaluate the possibility of metabolic programming, both CO and MG 

groups were investigated at adult life. Interestingly, MG offspring had hyperphagia, although 

we observed less body weight combined with decreased fat stores. Furthermore, MG animals 

showed insulin resistance, dyslipidemia, disorders in oxidative stress parameters and 

inflammatory state at adulthood. Thus, we show for the first time, that the PN early MG 

exposure leads to metabolic syndrome in adult rat offspring. 
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At PN90 MG group presented, less body weight and body length, it is possible that 

MG causes a deleterious effect on growth hormone (GH) release or inhibition of their action 

on tissue development, such as type 1 diabetic patient, as previously suggested [45]. This 

reduced body weight in MG animals can also be caused by impairment of adipose tissue 

development, as well as in the other tissues. Rodrigues et al. observed that MG further 

impairs adipose tissue metabolism by the decrease of blood supply [53]. In this sense, studies 

have shown the role of hypoxia on adipose tissue dysfunction and consequent decrease of 

adipocytokine secretion. Normal expansion of adipocytes leads to increased cell volume, 

making the distance between central and peripheral adipocytes greater than the maximum 

oxygen diffusion distance. Thus, disturbance in tissue oxygenation, inefficient angiogenesis 

and vascular network impairment may probably be the basis of questions related to adipose 

tissue dysfunctions with regard to adequate adipocyte growth and accumulation of fat stores 

[54-60]. However, the mechanisms directly involved in the microvascularization of adipose 

tissue are still unknown. Perhaps, protein glycation contributes directly to vascular 

dysfunction in adipose tissue during chronic treatment with MG [53]. MG has a direct effect 

on neo-angiogenesis in adipose tissue, compromising its healthy growth due to the decrease in 

tissue vascularization. It has been observed that MG reduced HIF-2α expression, which 

compromises angiogenesis and consequent tissue expansivity [61]. These previous findings 

reflect the effects on adipose tissue impairment caused by MG exposure during 14 days, as 

well as the presented here in our study. However, we show for the first time, that precocious 

MG exposure leads to lower body weight, despite a higher food intake throughout life. 

Decreased adipose tissue mass, as expected, can be linked with to lower production of leptin, 

which can be the key to understanding the increased food intake. Unfortunately, we do not 

investigate this parameter in this work. 

As opposed to the work of Rodrigues et al, 2017, we observed in our study that 

adipocytes in the MG group are larger than in the CO group, although the adipose tissue is 

reduced in MG animals as a whole. It is well known that MG leads to a lower expression of 

PPAR gamma, which is an important factor for adipogenesis [61], and that a decrease in the 

expression of PPAR gamma leads to a decrease in adipogenesis [86]. Thus, angiogenic 

dysfunction leads to a decrease in adipose tissue, and a decrease in the expression of PPAR 

gamma leads to an increase in adipocytes.Therefore, what leads to a decrease in adipose tissue 

as a whole is angiogenic dysfunction and what leads to an increase in adipocytes is a decrease 

in the expression of PPAR gamma. 
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In this study, we clearly demonstrate, by ivGTT and HOMA-IR, that MG animals 

were insulin resistant. Previously studies have already demonstrated the effects of MG on 

insulin pathway and its intimate relationship between high blood MG levels and  insulin 

resistance in humans [62], rodents [63] and cell culture [64].  

It is known that dicarbonyl stress has an important role in the development of type 2 

diabetes, as well as in insulin resistance, mainly due to its toxicity to the pancreatic beta cell 

[69]. This toxic effect can lead to pancreatic islets hypertrophy, caused by the decrease in beta 

cell function and increased reactive oxygen species production [87]. 

Several studies have shown that the quantification of the levels of fructosamine is 

relevant to evaluate the level of total glycated proteins [65, 66]. In our study, MG animals 

have increased blood fructosamine levels. In a previous study, we demonstrated that maternal 

MG treatment, during lactation, increased blood and milk fructosamine levels; further, their 

pups have increased blood fructosamine levels at adult life [40].  In the present study, we 

show that direct exogenous MG i.p. injections in offspring also leads to increased blood 

fructosamine levels. 

Among the factors that characterize the metabolic syndrome, dyslipidemia is one of 

them and as it is known is strongly related to cardiovascular diseases. Furthermore, it is also 

known that lipids are an important source of protein modifying, in the formation of advanced 

lipoxidation agents (ALEs), directly related to the formation of atherosclerosis plaques [67-

69]. Our study clearly shows that the MG animals have dyslipidemia, which is consistent with 

other studies demonstrating that MG is associated with dyslipidemia, showing decrease HDL 

cholesterol, mainly by changes in the methionine and tyrosine of apolipoprotein A1 (ApoA1) 

[70]. In addition, another study shows that glycated HDL has a lower content of sphingosine-

1-phosphate, contributing to structural and functional modification of HDL [71]. Thus, MG 

animals present an increased risk to development cardiovascular disease [47].  

Elevated MG levels are found parallel to oxidative stress as well as AGEs; however, 

not always these data are accompanied by high blood glucose levels [72-75]. In this study, 

MG animals showed higher activity of SOD and CAT in the liver and kidney, and only SOD 

in the pancreas, which can indicate an increase of reactive oxygen species, and an increase in 

AGE levels in the liver, that is closely related to the development of hepatic steatosis at an 

early stage of the development of non-alcoholic fatty liver disease [88, 89], as well as 

inflammatory infiltrates and the development of fibrosis [89]. However, all the studies in the 

literature related similar data due to MG exposure at adult life, while our study for the first 

time show this due to exposure in early period with effects at adulthood.  
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Lipid peroxidation is one of the outcomes of reactions with unstable molecules, and 

LOOH levels are an indirect measure of damage that is caused by oxidative stress [76]. In the 

current study, we observed a significant increase in LOOH in the liver, kidney and pancreas. 

These findings are consistent with previous studies, showing a clear relationship between 

dicarbonyl stress and the glycation of membrane phospholipids [69]. Moreover, studies have 

shown that HDL cholesterol is an important protective agent against oxidative stress [71]. 

Berlanga et al. demonstrated that there is an intimate relationship between high levels 

of MG and AGEs and renal diseases [45]; however, more studies are needed to confirm 

whether these diseases are directly related to kidney mass loss. We found in this study that the 

early exposure to MG leads to morphological kidney modification. Development of chronic 

kidney disease, renal fibrosis and the onset of kidney failure is directly related to the increased 

levels of MG [90], leading to whole organ injury, which includes lower glomerular capsule 

and filtration rate, in addition to the well stablished role in the reactive oxygen species 

generation [91]. 

When AGEs binding to their respective receptors (RAGE) it causes numerous 

modifications in cell cycle, with significant alteration in the translation of target genes 

responsible for the expression of adhesion molecules, endothelial growth factors and 

inflammatory cytokines [77-80]. In addition, there is a suppression of GSH activity, which 

decreases the activity of glyoxalase system and impairs detoxification of MG, leading to 

increasing levels of MG and circulating AGEs [81]. Moreover, in our study, MG group 

showed decreased GSH, which is also involved in elevated oxidative stress in these animals. 

Our results clearly demonstrate that the MG group presents higher levels of MPO in 

the liver, kidney and pancreas indicating inflammatory process already established in these 

tissues. The relationship of oxidative stress, inflammation, AGEs and their precursors, and 

their relevant role in the development of renal diseases, is already known [82]. In addition, 

studies have shown that a diet with low levels of AGEs had a significant reducing effect on 

inflammatory markers, oxidative stress and improved insulin sensitivity in resistant patients 

[83-85]. 

In conclusion, the present study shows that postnatal early MG exposure, induces 

oxidative stress and inflammation state, which can induces metabolic dysfunction onset, such 

as dyslipidemia, hyperinsulinemia and insulin resistance, increasing the risk of cardiovascular 

disease. All together, these observations confirm lactation as an important period for health or 

disease programming, and suggest the careful use of infant formulas in the newborn diets. 
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FIGURE CAPTIONS 

 

Fig 1. Effect of postnatal early MG exposure on body composition and food intake. Body 

weight evolution before weaning (A), body weight at PN21 (B), body weight evolution after 

weaning (C), body weight at PN90 (D), food intake (E), AUC food intake (F), relative food 

intake (G) and AUC relative food intake (H), body length (I), periepididymal fat (J), 

retroperitoneal fat (K) and mesenteric fat (L), adipocyte area (M) and representative 

histological image of adipose tissue (N). Data are presented as mean ± SEM (n = 12 – 15). To 

compare the experimental groups Student’s t test was used, where *p<0.05, **p<0.01, 

***p<0.001 and ****p<0.0001.  

 

Fig 2. Effect of postnatal early MG exposure on glucose homeostasis and lipid profile. 

Blood glucose during ivGTT (A), AUC of blood glucose (B), blood insulin during ivGTT (C), 

AUC of insulin ivGTT (D), fasting blood glucose (E), fasting blood insulin (F), HOMA-IR 

(G), blood fructosamine (H), total cholesterol (I), HDL cholesterol (J), triglycerides (K), LDL 

cholesterol (L). Data are presented as mean ± SEM (n = 10 – 15). To compare the 

experimental groups Student’s t test was used, where *p<0.05, **p<0.01, ***p<0.001 and 

****p<0.0001. 

 

Fig 3. Effect of postnatal early MG exposure on liver oxidative stress, inflammation and 

metabolism. Liver mass (A), hepatic SOD (B), hepatic CAT (C), hepatic GSH (D), hepatic 

LOOH (E), hepatic MPO (F), hepatic steatosis (G), representative histological images of 

hepatic steatosis (H), perivascular hepatic fibrosis (I) and representative histological images 

of perivascular hepatic fibrosis (J).  Data are presented as mean ± SEM (n = 8 – 10). To 

compare the experimental groups Student’s t test was used, where *p<0.05, **p<0.01, 

***p<0.001 and ****p<0.0001. 

 

Fig 4. Effect of postnatal early MG exposure on kidney oxidative stress, inflammation 

and metabolism. Kidney mass (A), kidney SOD (B), kidney CAT (C), kidney GSH (D), 

kidney LOOH (E), kidney MPO (F), glomeruli per field (G), glomerular area (H), capsular 

space (I), pericapsular fibrosis (J) and representative histological pericapsular fibrosis (K). 

Data are presented as mean ± SEM (n = 8 – 10). To compare the experimental groups 

Student’s t test was used, where *p<0.05, **p<0.01 and ***p<0.001. 
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Fig 5. Effect of postnatal early MG exposure on pancreas oxidative stress, inflammation 

and islet area. Pericapsular mass (A), pancreas SOD (B), pancreas GSH (C), pancreas LOOH 

(D), pancreas MPO (E), islet area (F), and representative histological image of islet area (G). 

Data are presented as mean ± SEM (n = 8 – 10). To compare the experimental groups 

Student’s t test was used, where *p<0.05, **p<0.01 and ***p<0.001. 
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ATTACHMENT 03: 

 

University Comitee of Ethics in Animals Use Approval 



CERTIFICADO

Certificamos que o Projeto intitulado "EFEITOS ENDÓCRINOS E METABÓLICOS PROLONGADOS DO TRATAMENTO NEONATAL 
COM METILGLIOXAL EM FILHOTES DE RATAS WISTAR", protocolado sob o CEUA nº 3830171215, sob a responsabilidade de 
Paulo Cezar De Freitas Mathias  e equipe; Flávio Andrade Francisco; Caroline Ribeiro; Claudinéia Conationi Da Silva Franco; Lucas 
J. Saavedra; Luiz Henrique Schimitt ; Maroly Valentin Alves Pinto; Rodrigo Mello Gomes; Vander Silva Alves; Veridiana M. Mreira  - 
que envolve a produção, manutenção e/ou utilização de animais pertencentes ao filo Chordata, subfilo Vertebrata (exceto o homem), 
para fins de pesquisa científica (ou ensino) - encontra-se de acordo com os preceitos da Lei 11.794, de 8 de outubro de 2008, com o 
Decreto 6.899, de 15 de julho de 2009, com as normas editadas pelo Conselho Nacional de Controle da Experimentação Animal 
(CONCEA), e foi aprovado pela Comissão de Ética no Uso de Animais da Universidade Estadual de Maringá (CEUA/UEM) em 
reunião de 25/01/2016.

We certify that the proposal "EFFECTS ENDOCRINE AND METABOLIC EXTENDED THE NEWBORN TREATMENT IN RATS 
METHYLGLYOXAL WISTAR PUPPIES", utilizing 320 Heterogenics rats (260 males and 60 females), protocol number CEUA 
3830171215, under the responsibility of Paulo Cezar De Freitas Mathias  and team; Flávio Andrade Francisco; Caroline 
Ribeiro; Claudinéia Conationi Da Silva Franco; Lucas J. Saavedra; Luiz Henrique Schimitt ; Maroly Valentin Alves Pinto; 
Rodrigo Mello Gomes; Vander Silva Alves; Veridiana M. Mreira  - which involves the production, maintenance and/or use of 
animals belonging to the phylum Chordata, subphylum Vertebrata (except human beings), for scientific research purposes (or 
teaching) - it's in accordance with Law 11.794, of October 8 2008, Decree 6899, of July 15, 2009, with the rules issued by the 
National Council for Control of Animal Experimentation (CONCEA), and was approved by the Ethic Committee on Animal Use 
of the State University of Maringá (CEUA/UEM) in the meeting of 01/25/2016.

Vigência da Proposta: de 03/2016 a 12/2018 Laboratório: Depto De Biotecnologia, Genética E Biologia Celular

Procedência: Biotério Setorial do Laboratório de Biologia Celular da Secreção - (LBCS, PRONEDO)

Espécie: Rato heterogênico Gênero: Machos idade: 21 N: 120

Linhagem: Wistar Peso: ~50    

Procedência: Biotério Central da UEM

Espécie: Rato heterogênico Gênero: Machos idade: 70-80 N: 20

Linhagem: Wistar Peso: ~300    

Procedência: Biotério Setorial do Laboratório de Biologia Celular da Secreção - (LBCS, PRONEDO)

Espécie: Rato heterogênico Gênero: Machos idade: 90 N: 120

Linhagem: Wistar Peso: ~400    

Procedência: Biotério Central da UEM

Espécie: Rato heterogênico Gênero: Fêmeas idade: 60-70 N: 60

Linhagem: Wistar Peso: ~250    

Resumo: É crescente a observação de que insultos perinatais têm consequências de curto- e longo-prazo no crescimento e 
metabolismo dos animais como indicam alguns dados epidemiológicos e experimentais. Com base nessas observações, podemos 
dizer que doenças metabólicas tais como o diabetes tipo 2, obesidade e hipertensão podem ser “programadas” durante estágios 
críticos de desenvolvimento, como gestação e lactação. Entre as diversas pesquisas para explicar os diferentes agentes causadores e 
seus papéis na instalação e manutenção do diabetes e disfunções das ilhotas pancreáticas, a formação dos produtos de glicação 
avançada, chamados de AGEs (do inglês, Advanced Glycation End Products) tem ganhado significativa importância entre os 
pesquisadores. Além da formação de AGEs ocorrer normalmente sob condições fisiológicas esses produtos também podem ser 
introduzidos no organismo por fontes exógenas, como o fumo e a dieta. O objetivo deste trabalho será estudar os efeitos da 
administração de metilglioxal em filhotes de ratos Wistar durante a lactação, sobre o metabolismo e função pancreática tanto aos 21 
quanto aos 90 dias de vida. Os resultados serão expressos como a média ± erro padrão da média (M ± EPM). Para avaliar diferenças 
entre os grupos será usado one-way ANOVA, e pós-teste de Tukey, nível de significância p<0,05.
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