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APRESENTAÇÃO 

 

 

Esta tese é composta por dois artigos científicos, intitulados: 1- “Methylphenidate 

treatment at adolescence malprograms metabolism and behavior at adulthood in 

male rats” e 2- “Low-protein diet induced HPA axis hyperactivation and altered 

milk composition imprints the metabolism of weaned male rat offspring”. Os 

trabalhos demonstram a importância de duas janelas críticas do desenvolvimento, 

lactação e adolescência, e como diferentes insultos podem impactar o metabolismo e o 

comportamento em roedores. Em consonância às regras do Programa de Pós-Graduação 

em Ciências Biológicas, os artigos 1 e 2 foram redigidos de acordo com as normas das 

revistas Journal of Physiology, com atual fator de impacto 4.54 (Qualis CB1: A2) e 

European Journal of Nutrition, com atual fator de impacto 4.66 (Qualis CB1: A2), 

respectivamente. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



RESUMO GERAL 

 

INTRODUÇÃO – O desenvolvimento de doenças metabólicas e distúrbios 

comportamentais na vida adulta têm sido associados à insultos no início da vida. O 

conceito DOHaD (Developmental Origins of Health ans Diseases) descreve, por meio 

de estudos experimentais e epidemiológicas, como eventos em fases sensíveis do 

desenvolvimento provocam alterações fisiológicas no organismo, programando-o para 

consequências a longo prazo. Gestação, lactação e adolescência têm sido consideradas 

janelas para a programação metabólica, uma vez que há plasticidade do Sistema 

Nervoso Central nestes períodos, além da susceptibilidade dos órgãos periféricos. 

Insultos nutricionais e farmacológicos podem programar o organismo nessas fases. Com 

isso, ratos adolescentes tratados com o psicoestimulante Metilfenidato, utilizado para o 

tratamento do Transtorno de Déficit de Atenção com Hiperatividade (TDAH) podem 

apresentar um fenótipo extremamente vulnerável ao desenvolvimento de doenças na 

vida adulta. Em relação aos insultos nutricionais, a restrição proteica durante a lactação 

é considerada um modelo bem estabelecido para o estudo da programação metabólica. 

O estresse causado nas mães pela desnutrição pode alterar seu comportamento em 

relação a prole, modificar a composição do leite e o perfil metabólico da prole desde o 

início da vida. 

 

OBJETIVOS – Avaliar o impacto de insultos farmacológicos e nutricionais em fases 

críticas do desenvolvimento sobre o metabolismo e comportamento de ratos Wistar 

machos a curto e longo prazo. 

 

MÉTODOS – Para a realização do primeiro artigo (insulto farmacológico), ratos Wistar 

machos foram tratados com Metilfenidato (grupo MPH, 1.0 mg/kg/dia, via oral) ou 

Salina (grupo SAL, 0.9%) dos 21 aos 51 dias de vida. Aos 52 dias, um lote de animais 

foi submetido aos procedimentos experimentais de comportamento e metabolismo. 

Outro lote de animais, ao término do tratamento, ficou 60 dias sem receber nenhuma 

droga, e então foi avaliado aos 110 dias de vida. Para a realização do segundo artigo 

(insulto nutricional), ratas prenhas foram alocadas em caixas individuais. Na ocasião do 

nascimento dos filhotes as ninhadas foram padronizadas para oito filhotes por mãe e 

foram divididas em dois grupos experimentais: mães que receberam dieta low protein 

nas primeiras duas semanas de lactação (grupo LP, 4% de proteínas) e mães que 



receberam dieta comercial para ratos (grupo NP, 23% de proteínas). Mães e filhotes 

foram avaliados aos 7, 14 e 21 dias. Além disso, o leite das mães foi retirado nestes 

mesmos dias e analisados em relação a sua composição de macronutrientes. Durante 

todo o período experimental os animais foram mantidos sob temperatura (23 ± 2 

5 ºC) e fotoperíodo (7:00 a.m. to 7:00 p.m., ciclo claro) controlados. Em ambos os 

trabalhos os dados obtidos foram expressos como média ± erro padrão e analisados 

através de test t de Student ou ANOVA de duas vias com pós teste de Holm-Sidak, com 

intervalo de confiança de 95%. O programa utilizado 

foi GraphPad Prism, versão 7.01. 

 

RESULTADOS E DISCUSSÃO – O tratamento com Metilfenidato na adolescência 

provocou diminuição do consumo alimentar e hipoinsulinemia aos 52 dias, 

corroborando com relatos de caso da literatura. Além disso, observou-se um 

comportamento ansiogênico e antipânico nos animais jovens. O mecanismo envolvido 

na gênese destes comportamentos não foi elucidado. Na vida adulta, animais do grupo 

MPH apresentaram sobrepeso, aumento dos estoques de gordura corporal, 

hiperinsulinemia e dislipidemia. Essas alterações foram associadas ao aumento da 

atividade do Sistema Nervoso Parassimpático. Interessantemente, as alterações 

comportamentais se mantiveram na vida adulta. Em relação ao segundo artigo, 

demonstrou-se que o insulto nutricional na lactação é capaz de hiper ativar o eixo 

hipotálamo-pituitária-adrenal (HPA) da mãe. Com isso, as mães LP apresentaram 

modificações do comportamento materno em relação à prole e alterações na composição 

do leite, dentre elas a elevação dos níveis de corticosterona e de lipídeos totais. 

Associado a isso, os filhotes apresentaram um fenótipo magro durante a lactação, um 

aumento da concentração de corticosterona ao 7º dia e alterações morfológicas no tecido 

adiposo branco e marrom. Provavelmente, a elevação da atividade do eixo HPA e a 

alteração da composição do leite modificaram o metabolismo destes animais, de modo a 

aumentar seu gasto energético. 

 

CONCLUSÃO – Insultos farmacológicos e nutricionais aplicados em fases sensíveis do 

desenvolvimento programam o metabolismo e o comportamento a curto e a longo 

prazo. 

 

PALAVRAS – CHAVE – Adolescência; Lactação; Metilfenidato; Restrição proteica. 



GENERAL ABSTRACT 

 

INTRODUCTION - The development of metabolic diseases and behavioral disorders in 

adulthood has been associated with insults early in life. The DOHaD (Developmental 

Origins of Health ans Diseases) concept describes, through experimental and 

epidemiological studies, how events in sensitive stages of development cause 

physiological changes in the body, programming it for long-term consequences. 

Pregnancy, lactation, and adolescence have been considered windows for metabolic 

programming, since there is plasticity of the Central Nervous System in these periods, 

in addition to the susceptibility of peripheral organs. Nutritional and pharmacological 

insults can program the body in these phases. Thus, adolescent rats treated with the 

psychostimulant Methylphenidate, used for the treatment of Attention Deficit 

Hyperactivity Disorder (ADHD) may present an extremely vulnerable phenotype to the 

development of diseases in adulthood. In relation to nutritional insults, protein 

restriction during lactation is considered a well-established model for the study of 

metabolic programming. The stress caused in mothers by malnutrition can change their 

behavior in relation to offspring, modify the composition of milk and the metabolic 

profile of the offspring from the beginning of life. 

 

AIMS - Evaluate the impact of pharmacological and nutritional insults at critical stages 

of development on the metabolism and behavior of male Wistar rats at short and long-

term. 

 

METHODS - For the first article (pharmacological insult), male Wistar rats were treated 

with Methylphenidate (MPH group, 1.0 mg/kg/day, via gavage) or Saline (SAL group, 

0.9%) from 21 to 51 days of life. At 52 days, a batch of animals was submitted to 

experimental behavior and metabolism procedures. Another batch of animals, at the end 

of the treatment, was 60 days without receiving any drugs, and then was evaluated at 

110 days of life. For the second article (nutritional insult), pregnant rats were placed in 

individual boxes. At birth, litters were standardized to eight puppies per mother and 

were divided into two experimental groups: mothers who received a low protein diet in 

the first two weeks of lactation (LP group, 4% protein) and mothers who received a 

normal protein diet (NP group, 23% proteins) through lactation. Mothers and puppies 

were evaluated at 7, 14 and 21 days. In addition, the mothers' milk was removed at the 



same days and analyzed for its macronutrient composition. Throughout the 

experimental period, the animals were kept under temperature (23 ± 25 ºC) and 

photoperiod (7:00 a.m. to 7:00 p.m., light cycle) controlled. In both studies, the data 

obtained were expressed as mean ± standard error and analyzed using Student's t test or 

two-way ANOVA with Holm-Sidak post-test, with a 95% confidence interval. The 

program used was GraphPad Prism, version 7.01. 

 

RESULTS AND DISCUSSION - Treatment with methylphenidate in adolescence 

caused a decrease in food consumption and hypoinsulinemia at 52 days, corroborating 

with case reports in the literature. In addition, an anxiogenic and antipanic behavior was 

observed in young animals. The mechanism involved in the genesis of these behaviors 

has not been elucidated. At adulthood, MPH animals’ group were overweight, increased 

body fat stores, hyperinsulinemia and dyslipidemia. These changes were associated with 

increased Parasympathetic Nervous System activity. Interestingly, behavioral changes 

have persisted into adulthood. In relation to the second article, it was shown that the 

nutritional insult during lactation is capable of hyper-activating the mother's 

hypothalamic-pituitary-adrenal (HPA) axis. As a result, LP mothers showed changes in 

their maternal behavior in relation to their offspring and changes in the composition of 

milk, including an increase in levels of corticosterone and total lipids. Associated with 

this, offspring showed a lean phenotype during lactation, an increase in the 

concentration of corticosterone on the 7th day and morphological changes in the white 

and brown adipose tissue. Probably, the increase in the activity of the HPA axis and the 

change in the composition of milk modified the metabolism of these animals, in order to 

increase their energy expenditure. 

 

CONCLUSION - Pharmacological and nutritional insults applied at sensitive stages of 

development program the metabolism and behavior in the short and long term. 

 

KEYWORDS - Adolescence; Lactation; Methylphenidate; Protein restriction. 
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Abstract 29 

 30 

Currently, attention deficit hyperactivity disorder (ADHD) affects many children and 31 

adolescents worldwide. Methylphenidate (MPH) is the mainly drug used to treat ADHD, 32 

once it inhibits the dopamine reuptake in the synaptic cleft.  Recently, concern has been 33 

raised about the consequences of MPH use and abuse during adolescence, an important 34 

critical stage of development. We investigated the short- and long-term effects of MPH 35 

treatment during rat adolescence on body composition, metabolism, and anxiety-like 36 

behavior. To test this hypothesis, male Wistar rats were treated with MPH (1.0 mg /kg 37 

/day) or saline (0.9% NaCl) from postnatal day (P) 21 to P51. A batch of animals were 38 

used in the experiments at P52. Another batch of rats were untreated between P52 and 39 

P110 and in this age the experiments were conducted. MPH treatment provoked, at P52, 40 

reduced food intake, hypoinsulinemia, decreased total cholesterol and increased HDL-C. 41 

In addition, adolescent rats showed anxiogenic-like effect and antipanic response to 42 

behavioral tests. After a long time of drug discontinuation, MPH group had increased 43 

body weight, food intake, fat pad stores, dyslipidemia, and hyperinsulinemia. This 44 

phenotype was associated to elevated parasympathetic activity. Moreover, behavior tests 45 

showed no differences compared to the analysis at P52. We concluded that MPH 46 

treatment at adolescence programs male rats to obesity, metabolic dysfunction, and 47 

behavioral alterations at adulthood. 48 

 49 

Keywords: methylphenidate; adolescence; behavior; obesity. 50 

 51 

 52 

 53 



Introduction 54 

  55 

MPH is a psychostimulant drug widely used for the treatment of ADHD 56 

(Lepelletier et al., 2014; Montagnini et al., 2016). This neurodevelopment disorder is 57 

characterized by hallmark symptoms including inattention, hyperactivity, and impulsivity 58 

(Jaboinski et al., 2015; Somkuwar et al., 2015). Although ADHD has multiple etiology, 59 

central catecholaminergic dysfunction, including dopaminergic and noradrenergic 60 

neurotransmission imbalance, are involved in the emerging of this condition (Wilens, 61 

2008; Yang et al., 2016). MPH acts by blocking the dopamine (DA) and norepinephrine 62 

(NE) transporters in the striatum and the prefrontal cortex, resulting in increases in 63 

synaptic DA and NE (Faraone, 2018). 64 

ADHD is a neuropsychiatric pathology mainly affecting children and adolescents. 65 

Its worldwide epidemiological prevalence is of 12-15% in children and persisting into 66 

adulthood in 4-5% of individuals (Froehlich et al., 2007; Somkuwar et al., 2015). The 67 

rate of diagnosis of ADHD has increased by 41% over the last decade, especially in boys 68 

aged 14 to 17 (Jordan et al., 2014; Jaboinski et al., 2015). Approximately two thirds of 69 

diagnosed children are medicated with psychostimulants. MPH is also used illegally by 70 

high school and college students to improve the performance in studies (Thanos et al., 71 

2015). Chronic exposure to psychostimulants induces behavioral, biochemical, 72 

molecular, and morphological changes that are linked to central nervous system plasticity 73 

(Ponchio et al., 2015). 74 

The increasing use and abuse of MPH, especially during critical windows of 75 

development, raises concerns about the consequences on neural and behavioral 76 

development and in adult health (Thanos et al., 2015). Epidemiological (Ravelli et al., 77 

1976; Barker, 1995) and experimental (Fagundes et al., 2007; de Oliveira et al., 2011) 78 

studies demonstrated that insults during childhood and adolescence can contribute to the 79 



emergency of diseases later in life (Holder & Blaustein, 2014; Mantovani & Fucic, 2014; 80 

Ismail et al., 2017). Notably, during adolescence, changes in synaptic pruning and 81 

myelination rates have been reported; in addition, extensive shaping of connectivity is 82 

occurring between brain regions in this phase (Tzanoulinou & Sandi, 2017; Di Miceli et 83 

al., 2019). These remarks corroborate with Development Origins of Health and Disease 84 

(DOHaD) concept, which describes thought scientific studies how early environmental 85 

factors can program long-term consequences.  86 

Although many studies shown that nutritional insults in early life are crucial to 87 

program diseases at adulthood, recently, other factors are also showed to determine long-88 

term dysfunctions, likewise substance abuse such as psychostimulants medicines 89 

(Vaiserman, 2015; Korchynska et al., 2020). The use of amphetamines during pregnancy 90 

was associated with low birth weight, prematurity, and increased maternal and child 91 

mortality (Costa Gde et al., 2016). MPH during pregnancy permanently impairs the 92 

ability of insulin production by pancreatic β cells, leading to glucose intolerance in adult 93 

offspring female rats (Korchynska et al., 2020) and administration of MPH or cocaine 94 

during early lactation impairs maternal behavior and program to increase anxiety-like 95 

behavior in adult offspring (Zimmerberg & Gray, 1992; Ponchio et al., 2015). 96 

Recent studies performed in rodents demonstrated that adolescent exposure to 97 

clinical oral doses of MPH may induce acute and long-lasting effects on monoamine 98 

neurotransmission (Amodeo et al., 2017; Di Miceli et al., 2019) reward-dependent 99 

learning and decisions stimuli (Bolanos et al., 2003). Administration of MPH during 100 

adolescence also enhances anxiety, as well depressive-like symptoms later in life 101 

(Loureiro-Vieira et al., 2017). 102 

The literature is mainly focused on the cognitive, neurophysiological, 103 

neurological, psychosocial and behavior outcomes caused by exposure to amphetamine, 104 



cocaine, and methylphenidate during critical windows of development. However, the 105 

acute and long-lasting effects on metabolism at adulthood have been poorly reported, 106 

although a link between prenatal psychostimulants exposure and an increased risk of 107 

developing obesity and type 2 diabetes in the offspring has been noted (Messiah et al., 108 

2011; Vaiserman, 2015; Korchynska et al., 2020). 109 

During MPH treatment at childhood and adolescence changes in body 110 

composition are observed, including fat loss and alterations in bone development (Poulton 111 

et al., 2012). Anorexigenic effect of MPH had been demonstrated in preclinical and 112 

clinical studies, especially during the first three to six months of treatment in children 113 

(Bou Khalil et al., 2017). According to a case report, an adolescent patient that 114 

discontinued MPH treatment presented an increase by five points in BMI (body mass 115 

index) and eating behavior disorders within one year of medicine cessation (Benard et al., 116 

2015). The consequences of acute and long-term adolescence MPH treatment on weight 117 

gain, metabolism and behavior have been poorly analyzed. Therefore, we investigated the 118 

short- and long-term effects of MPH treatment during rat adolescence on body 119 

composition, metabolism, and anxiety-like behavior. 120 

 121 

 122 

 123 

 124 

 125 

 126 

 127 

 128 

 129 



Materials and Methods 130 

 131 

Ethical approval 132 

All experiments were conducted according to the ARRIVE guidelines (Kilkenny et al., 133 

2010) and with Brazilian Association for Animal Experimentation (COBEA) standards. 134 

Protocols were approved by the Ethics Committee in Animal Research of the State 135 

University of Maringa (protocol number 8597180117).  136 

 137 

Animals and Methylphenidate (MPH) treatment 138 

Wistar rats were provided by the central animal house of the State University of Maringa 139 

and were kept in the animal house of the laboratory of secretion cell biology. After one 140 

week of adaptation, female and male Wistar rats (70 and 80 days of age, respectively) 141 

were mated in a ratio of three females to each male. Pregnant females were transferred to 142 

individual cages. At birth, litters were standardized to nine pups per dam, preferentially 143 

male. At postnatal day 21 (P21), the male offspring were weaned, housed four per cage 144 

and assigned to either the control group that received a 0,9 % saline solution, (SAL group; 145 

n=12 litters) or the group that received Methylphenidate (Ritalin®, Novartis, Brazil) at a 146 

dose 1.0 mg/kg/day (MPH group; n=12 litters). MPH dose corresponds to a relatively low 147 

therapeutically recommended oral dose in humans (Seeman & Madras, 2002; Haleem et 148 

al., 2015). Animals were weighted and treated via gavage daily for 30 days (P21-P51). 149 

Between P52 and P110 the animals of both groups did not receive treatment. Analyses 150 

were conducted at P52 and P110. Metabolism analyses were performed with the first lot 151 

of animals. Experimental procedures were effectuated at P52 (n=4 litters per group) and 152 

P110 (n=4 litters per group). In this lot, all the pups of the same litter received the same 153 

treatment. The second lot of animals (n=4 litters per group) were subjected to behavioural 154 

tests at P52 and P110; for this, in the same litter two rats received saline and two rats 155 

received MPH. During all the experimental period animals received water and food ad 156 



libitum and were kept under controlled temperature (23 ± 2°C) and photoperiod (7:00 157 

a.m. to 7:00 p.m., light cycle) conditions. 158 

 159 

Body weight, food intake and fat pad stores measurements 160 

Body weight (bw) was determined every day and food intake (fi) was measured three 161 

times a week during treatment (P21-P51). After treatment (P52-P110) bw and fi were 162 

determined three times a week. Food intake was calculated as the difference between the 163 

amount of diet remaining (Df) and the amount presented previously (Di), divided by the 164 

number of animals in the cage and by the number of days: [FI(g) = (Df –Di)/4/2]. The 165 

area under the curve (AUC) was calculated for bw and fi. At P52 and P110, rats were 166 

anaesthetized with thiopental (45 mg/kg of bw), decapitated and laparotomized to remove 167 

their retroperitoneal, periepididymal and mesenteric fat pad stores (n= 4 litters per group). 168 

The weight of fat pads was expressed in relation to the body weight of each animal (g/100 169 

g of bw). 170 

 171 

Intraperitoneal insulin tolerance test (ipITT) 172 

At P52 and P110, a batch of animals (n= 4 litters per group) were submitted to 6-hour fast 173 

to perform ipITT.  They received an injection of insulin (1 U/kg of bw), and blood glucose 174 

was measured using a glucometer, as previously reported (Lechner & Hess, 2019). 175 

Glucose was determined at 0, 15, 30, 45 and 60 minutes. Subsequently, the rate of glucose 176 

tissue uptake or the rate constant for plasma glucose disappearance (Kitt) was calculated 177 

(Bonora et al., 1989). 178 

 179 

Intravenous glucose tolerance test (ivGTT) 180 



Two days after the ipITT, animals (n= 4 litters per group) were subjected to a surgical 181 

procedure to perform the ivGTT, as previously described (de Oliveira et al., 2011). After 182 

a 12-hour fast, blood samples were removed before the injection of glucose (1 g/kg of 183 

bw) (0 min) and 5, 15, 30 and 45 min afterward. Blood was collected, centrifugated and 184 

the plasma was stored at -20ºC for determination of glucose and insulin concentrations. 185 

The glucose and insulin responses during the test was calculated by AUC. 186 

 187 

Blood glucose and insulin 188 

Glucose concentration was measured by the glucose oxidase method using a commercial 189 

kit (GoldAnalisa®; Belo Horizonte, MG, Brazil) (Trinder, 1969). The insulin levels of 190 

plasma were measured by radioimmunoassay (RIA) (Scott et al., 1981).  191 

 192 

Lipid profile 193 

Triglycerides, total cholesterol and HDL-C were measured in plasma samples by a 194 

colorimetric method using commercial kits (Gold Analisa®; Belo Horizonte, MG, Brazil). 195 

LDL-C and VLDL-C values were determined by the Friedewald formula (Simoes et al., 196 

2007). The dosages were performed at P52 and P110. 197 

 198 

Autonomic nerve electrical activity 199 

At P110, a batch of rats (n=4 litters per group, rats from behavioural tests) that has been 200 

fasted for 12 hours were anaesthetized with thiopental (45mg/kg of bw). A longitudinal 201 

surgical incision was made on the anterior cervical region of the animal. The left superior 202 

vagus nerve from the superior cervical ganglion was isolated. A sympathetic nerve bundle 203 

was dissected from the ventral surface of the right interscapular brown adipose tissue 204 

(BAT) pad and placed on a bipolar hook electrode, according to the method previously 205 



described (Madden et al., 2017). The electrode was connected to an electronic device 206 

(Bio-Amplificator; Insight Equipamentos, Ribeirão Preto, Brazil) that amplified the 207 

electrical signal prior to filtering out the frequencies lower than 1 kHz and higher than 80 208 

kHz. The signal output was acquired using Insight software and stored on a computer. 209 

The animals were placed in a Faraday cage to avoid any electromagnetic interference 210 

during the experimental period (Barella et al., 2015). 211 

 212 

Elevated T-maze (ETM) behaviour 213 

On P52 and P110 animals (n= 4 litters per group) were assessed for elevated T-maze 214 

behaviour. The ETM was made of wood and had three arms with equal dimensions 215 

(50x12 cm). One of the arms was enclosed by 40 cm high walls and was oriented 216 

perpendicularly to two opposite open arms. The whole apparatus was elevated 50 cm 217 

above the floor. To analyze the inhibitory avoidance, each rat was placed at the end of the 218 

closed arm, facing the intersection of the arms.  The time used to leave this arm was 219 

assessed and registered at baseline (seconds). The same procedure was repeated twice 220 

with an interval of 30 seconds (inhibitory avoidance 1 and 2). Moreover, escape latency 221 

was evaluated putting animals in the open arms and assessing the latency to escape from 222 

this arm with four paws (escape 1-3). The maximum time considered for both tasks was 223 

300 seconds. Twenty-four hours before the test, the animals were pre-exposed to one of 224 

the open arms of the ETM for 30 minutes, making the test more sensitive because it 225 

decreases the exploration of the animal during the test (Teixeira et al., 2000). 226 

 227 

Open field test 228 

Locomotor activity of P52 and P110 rats (n= 4 litters per group) was measured by the 229 

ambulation of each animal in a circular arena (diameter 70 cm with 40 cm high walls). 230 



Rats were placed inside the circular arena, facing the wall, for 5 min. The total distance 231 

travelled in meters by each rat was recorded and analyzed by ANY-maze video 232 

monitoring program (Stoelting, USA) (Sestile et al., 2016). 233 

 234 

Statistical analysis 235 

The results are presented as the mean ± standard error of the mean (S.E.M). Statistical 236 

analysis was performed using Student’s t-test. A P value < 0.05 was considered 237 

statistically significant. Repeated-measures analysis of variance (RMANOVA) was used 238 

to analyze avoidance data from the ETM, with treatment as independent factor and trials 239 

(baseline, avoidance 1 and 2) as the repeated measure. When appropriate, post hoc 240 

comparisons were performed by the Holm-Sidak’s test. For escape data, latencies were 241 

merged, and data from each rat were analyzed as the mean ± standard error of the mean 242 

(S.E.M.) of the three performed trials. Merged escape index and the total distance 243 

travelled in the circular arena were analyzed by student’s t-test. Analyses were conducted 244 

in GraphPad Prism version 7.01 for Windows (GraphPad Software, Inc. San Diego, CA, 245 

USA). 246 

 247 

 248 

 249 

 250 

 251 

 252 

 253 

 254 

 255 



Results 256 

Body weight, food intake and body composition 257 

As shown in Figure 1, during MPH treatment no difference was observed in bw AUC 258 

(inset of Fig. 1A) and in final bw at P52 (Table 1). However, MPH animals presented a 259 

decrease of 12% (p<0.01) in food intake (inset of Fig. 1B) during this period. In the period 260 

after treatment, MPH group showed an 23% (p<0.01) and 114% (p<0.05) increase in bw 261 

(inset of Fig. 1A) and food intake (inset of Fig. 1B), respectively. Final bw at P110 was 262 

6% higher in MPH group (p<0.05, Table 1) compared to SAL animals. 263 

Figure 2A shows that fat pad stores of MPH treated animals were not altered at P52. 264 

However, at P110 MPH group presented elevated retroperitoneal, periepididymal and 265 

mesenteric fat stores by approximately 20% (p<0.05, Fig. 2B). 266 

 267 

Biochemical parameters and lipid profile 268 

Table 1 shows that MPH animals were normoglycemic, even though they presented 50% 269 

(p<0.05) lower fasting insulin levels at P52. 60 days after of treatment MPH animals 270 

showed an increase by 107% (p<0.01) in fasting insulin, without alterations in fasting 271 

glycemia. 272 

Regarding lipid profile (Table 1), at P52, MPH group displayed increases of 18% 273 

(p<0.05) and 23% (p<0.05) in total cholesterol and HDL-C, respectively. Additionally, 274 

triglycerides, LDL-C and VLDL-C presented no difference. At P110 MPH animals 275 

showed 13% (p<0.05) and 34% (p<0.05) increase in total cholesterol and LDL-C 276 

respectively. 277 

 278 

Glucose homeostasis during the glucose and insulin tolerance tests 279 



Immediately after the treatment, at P52, MPH rats were normoglycemic during the ivGTT 280 

(Fig. 3A). As demonstrated in Figure 3B, MPH group presented lower insulin levels 281 

during ivGTT at 0, 30 and 45 minutes (p<0.05). The Kitt (Fig. 3C) showed similar insulin 282 

sensitivity between groups at P52. At adulthood (P110), MPH group displayed higher 283 

glucose levels at 15 (p<0.05), 30 (p<0.05) and 45 (p<0.001) minutes of ivGTT associated 284 

to lower levels of insulin at 0 (p<0.01) and 15 minutes (p<0.05), as demonstrated in Figure 285 

3D and E. Moreover, MPH rats showed a reduction of 30% (p<0.05) in glucose 286 

disappearance rate (Kitt), indicating insulin resistance (Fig. 3F). 287 

 288 

Autonomic nervous system activity 289 

As shown in Figure 4, parasympathetic activity at P110 was increased 34% (p<0.05) in 290 

MPH group. No difference was observed between MPH and SAL groups in sympathetic 291 

activity. 292 

 293 

Elevated T-maze - avoidance, merged escape and locomotion 294 

Figure 5A shows that MPH facilitated the inhibitory avoidance acquisition at P52, 295 

suggesting an anxiogenic-like effect. RMANOVA revealed significant effects of trial 296 

[F(2, 32) = 7.95; p = 0.002], treatment [F(1, 16) = 4.98; p = 0.04] and an interaction 297 

between these factors [F(2, 32) = 3.21; p = 0.05]. Moreover, Figure 5B shows that MPH 298 

significantly increased the escape latency in the ETM [t16=2.21; p = 0.04], indicating an 299 

antipanic-like effect. MPH treatment did not affect locomotion in the circular arena at 300 

P52 [t16 =1.40; p = 0.18], as demonstrated by Figure 5C, indicating that the effects 301 

observed were not due to locomotor impairment. 302 

Administration of MPH did not affect inhibitory avoidance acquisition and escape 303 

performance in the ETM or locomotion in the circular arena at P110 (Figure 5D, E, F). 304 



RMANOVA revealed that the animals acquired inhibitory avoidance, observed by the 305 

significant effect of trial [F(2, 32) = 7.79; p = 0.002], but not of treatment [F(1, 16) = 306 

0.44; p = 0.52] or a treatment x trial interaction [F(2, 32) = 0.39; p = 0.68].  307 

 308 

 309 
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 329 



Discussion 330 

 331 

The increasing use of MPH in sensitive stages of development, especially 332 

adolescence, raises concerns about its immediate and long-term health effects. In the 333 

present study, we found that adult offspring rats exposed to MPH at adolescence 334 

displayed elevated body weight, food intake, and fat pad tissue. Moreover, insulin 335 

resistance and glucose intolerance can be associated with high parasympathetic activity. 336 

Altogether, these results suggest that MPH treatment at adolescence can be a possible 337 

predisposing factor for diabetes mellitus and obesity risk in later life. 338 

Now is completely accepted that the nutritional or hormonal environment during 339 

gestation and or lactation phases of development can permanently affect neuroendocrine 340 

pathways and predispose the adult organism to metabolic disorders (Dorner & 341 

Plagemann, 1994; Bouret, 2012). In addition to these environmental factors, recent 342 

studies provide evidence that the use of psychostimulants during pregnancy and lactation 343 

can also poorly program the offspring. Pregnant mice treated with MPH exhibited an 344 

increase in resorptions and offspring presented increased rates of external, skeletal, and 345 

visceral malformations (Costa Gde et al., 2016). Moreover, studies showed metabolic 346 

dysfunction and behavior alterations in the offspring of mothers treated with MPH or 347 

cocaine during pregnancy and /or lactation (Vaiserman, 2015; Korchynska et al., 2020).  348 

In addition to prenatal and postnatal periods, adolescence was recently reported 349 

as another window to metabolic programming since the neuroplasticity of puberty 350 

contribute to the vulnerability for the development of diseases. The increase of sexual 351 

hormones is a cause of structural and functional changes in the brain. Accordingly, 352 

nutritional, hormonal and drug abuse at adolescence can permanently changes 353 



physiological function (Holder & Blaustein, 2014; Ibanez et al., 2017; Ismail et al., 2017; 354 

de Oliveira et al., 2018). 355 

In this study, during adolescence, MPH treatment caused a reduction in food 356 

intake, as previously reported (Davis et al., 2012; Thanos et al., 2015), however, no 357 

changes in body weight and fat pad stores in MPH rats. In rats, the anorexigenic effect of 358 

MPH has been demonstrated in a dose-dependent manner; for example, daily doses of 5 359 

mg/kg do not induce body weight loss during development (Montagnini et al., 2014).  360 

Whereas in humans, weight loss and reduced appetite are the most common adverse effect 361 

associated to MPH (Thanos et al., 2015). Although the mechanisms involved in reduced 362 

food intake and weight loss by MPH are not totally understood, it is known that 363 

amphetamine-like drugs are sympathomimetic agents with marked central and peripheral 364 

stimulant properties (Mariotti et al., 2013; Bou Khalil et al., 2017).  365 

Interestingly, metabolism impairment is evident in adult rats treated with MPH at 366 

the adolescence period.  MPH rats presented high food intake, associated to elevated body 367 

weight gain and fat pad stores. Studies have been reporting that cessation of stimulant 368 

drugs use may cause a significant increase in body weight and appetite, accompanied by 369 

metabolic readaptation, which is interpreted as a growth rebound (Pizzi et al., 1986; 370 

Benard et al., 2015). Interestingly, after 3 months cessation of MPH treatment during 371 

adolescence significantly increased neuropeptide Y (NPY) levels in striatum, suggesting 372 

a correlation to weight gain (Gray et al., 2007). However, contrary to our findings, some 373 

previous studies have shown that unlike neonatal rats, periadolescent rats treated with 374 

MPH failed to show any growth impairment. They suggest differential effects of MPH 375 

on growth in different phases of development (Sprague & Sleator, 1977; Gray et al., 376 

2007). 377 



The hormones insulin and leptin act directly regulating adiposity via central 378 

nervous system (CNS) (Niswender & Schwartz, 2003). Interestingly, in this study, low 379 

levels of fasting insulin were observed at P52, which is closely related to a lean phenotype 380 

and normal glucose and insulin homeostasis. Conversely, increased fasting insulin levels 381 

and increased vagal parasympathetic activity were found at P110. An unbalanced 382 

autonomic nervous system (ANS), with high parasympathetic and low sympathetic 383 

activity, is associated to metabolic dysfunction and is particularly related to β-cell 384 

impairment in obese animals and humans (Balbo et al., 2007). In this way, MPH treatment 385 

was able to alter parasympathetic activity, which is closely related to obesity showed in 386 

these animals at adulthood. 387 

Although the overweight and metabolic dysfunction in adult rats were clearly 388 

observed in MPH group, little is known about the mechanisms that underlie these 389 

alterations. Prolactin is a hormone synthesized in the anterior pituitary gland which acts 390 

in β-cells activating its proliferation and increasing insulin secretion. Moreover, 391 

hyperprolactinemia can be associated to insulin resistance in humans and animals (Foa et 392 

al., 1955; Bahceci et al., 2003). Interestingly, the literature demonstrate that dopamine is 393 

involved in the regulation of prolactin secretion; the elevation of dopamine and/or 394 

stimulation of dopamine receptor D2 suppresses prolactin synthesis (Reis et al., 1997; 395 

Park et al., 2012). In this way, with the cessation of MPH treatment, and consequent 396 

decrease of dopamine in the synaptic cleft, probably caused an increase in prolactin 397 

release, collaborating to higher insulin secretion, insulin resistance and higher adiposity 398 

observed in MPH animals at P110. However, as a limitation of our study, we did not 399 

assess the dopamine and prolactin levels from these animals, which might exhibit changes 400 

caused by MPH treatment. 401 



In the present study, at the end of MPH treatment, animals had an increased total 402 

cholesterol that can be attributed to the increase in HDL-C. Previously, it was 403 

demonstrated that MPH has a positive impact on the lipid and lipoprotein profile, it 404 

significantly decreases total cholesterol, triglycerides and LDL-C in patients diagnosed 405 

with ADHD treated for 3 months (Charach et al., 2009). After discontinuation of MPH 406 

treatment, at P110, animals presented increased total cholesterol associated to an 407 

elevation in LDL-C levels. Psychostimulants long-term effects in lipid profile are not well 408 

understood, however, previously studies showed that MPH produces hepatic necrosis in 409 

mice indicating hepatotoxicity in a long-term use (Alam & Ikram, 2018). The precise 410 

long-term impact of MPH in liver and lipid profile requires more future investigation.  411 

MPH treatment at a sensitive stage of development, as adolescence, may also 412 

affect anxiety and panic like behavior. In the present study, we showed the short and long-413 

term effect of treatment in adolescent male rats on inhibitory avoidance, escape latencies 414 

and locomotor activity. Comparing inhibitory avoidance and escape latency from MPH-415 

treated group at P52 and P110, we observed there was no difference, suggesting the first 416 

effects remained. Saline-treated group at P110 showed an increase in both latencies that 417 

could mistakenly suggest a possible anxiogenic- and an antipanic-like effect compared to 418 

the first time the same animals were submitted to the ETM. In addition, locomotor activity 419 

was reduced in both groups at P110 compared to P52, indicating a reduction in 420 

exploratory behavior. However, it is more likely these effects observed at P110 can be 421 

attributed to a long-term memory. The literature shows a wealth of evidence indicating 422 

ETM, specifically the inhibitory avoidance task, as a learning and a memory model 423 

(Bertoglio & Carobrez, 2000; Asth et al., 2012). A previous investigation observed that 424 

rats locomotion in the open field was reduced after successive exposures in a similar way 425 

seen in our study (Djiogue et al., 2018).  This is a limitation of the model used; therefore, 426 



the test performed at P52 is more accurate and precisely than the test at P110. Thus, the 427 

second test in the P110 could have retrieved the memory consolidated after the first test, 428 

reducing exploratory behavior in all tasks, as observed by increased avoidance and escape 429 

latencies and reduced locomotion.  430 

Persistent alteration of monoaminergic transmission triggered by MPH chronic 431 

treatment at adolescence can potentially have developmental consequences in brain 432 

architecture and biochemical compounds. Indeed, the normal brain development requires 433 

a coordinated maturation of many processes and monoamines are important regulators 434 

(Gray et al., 2007). We observed an anxiogenic-like effect in male rats on the last day of 435 

treatment, which persists until adulthood. Along the same line, previously studies 436 

observed anxiety-like behavior until adulthood in rats treated with 2.0 mg/kg of MPH 437 

during periadolescence and adolescence (Bolanos et al., 2003; Britton et al., 2007; 438 

Vendruscolo et al., 2008). However, there are disagreements whether behavioral changes 439 

persist or not (Konrad-Bindl et al., 2016). Some studies have showed that animals treated 440 

at adolescence with MPH presented anxiolytic-like behavior at adult life (Gray et al., 441 

2007; Boyette-Davis et al., 2018). 442 

Experimental studies in animal models showed that many brain regions are 443 

involved in anxiety symptoms, such as hippocampus, amygdala, prefrontal cortex, and 444 

nucleus accumbens. Various mechanisms and neurotransmitters are involved in the 445 

regulation of anxious states; it has been suggested that dopaminergic system may play a 446 

central role in regulating anxiety-like behaviors (Zarrindast & Khakpai, 2015). Several 447 

evidence suggests that the mesolimbic/cortical dopamine systems seem to be involved in 448 

drugs affecting anxiety. Thus, increased dopamine in the synaptic cleft, for example when 449 

there is inhibition of reuptake by MPH, can induce an anxiogenic effect (Nasehi et al., 450 



2011; Zarrindast & Khakpai, 2015). There is no specific study showing the action of 451 

dopamine transporter inhibition on the anxiogenic effect and their mechanisms. 452 

At P52, we showed that MPH animals presented antipanic-like effect. Although 453 

MPH is commonly believed to affect primarily the dopamine system through blockage of 454 

dopamine transporter, evidence from neurochemical, histochemical and behavioral 455 

studies suggests that MPH can also affect noradrenergic and serotonergic systems 456 

(Gainetdinov et al., 1999). Previously studies demonstrated short and long-term effects 457 

of MPH on frontal serotoninergic system (Daniali et al., 2013) and MPH acting as an 458 

agonist of serotonin receptor (5-HT1A), an important pathway in antipanic-like response 459 

(Faraone, 2018). However, further studies are needed to clarify the effects of early 460 

methylphenidate treatment on panic behavior.  461 

In conclusion, chronic treatment with a low dose clinically relevant of MPH at 462 

adolescence programs male rats to overweight, metabolic dysfunction and behavioral 463 

alterations at adulthood. The effect of discontinued treatment of MPH requires further 464 

examination in view to verify the mechanisms involved in the metabolism and behavior 465 

programming.  466 
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Table 1 – Biometric and biochemical parameters in the rats just after the MPH 

treatment (P52) and at adulthood (P110). 

 

Data are presented as the mean ± SEM obtained from 9-12 rats from 4 litters in each experimental group. Significant 

differences between SAL and MPH group are represented by *p<0.05 and ** p<0.01 by Student’s t test. SAL, saline; 

MPH, methylphenidate; HDL-C, HDL-cholesterol; LDL-C, LDL-cholesterol and VLDL-C, VLDL-cholesterol. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters P52 P110 

 SAL MPH SAL MPH 

Final body weight (g) 204.9±6 217.2±3.7 404.8±7 428.7±7.5* 

Fasting glycemia (mg/dl) 90.2±4.9 83.7±2.9 78±3.4 83.1±2 

Fasting insulinemia (ng/ml) 0.24±0.03 0.12±0.04* 0.14±0.01 0.29±0.03** 

Total cholesterol (mg/dl) 66.2±3.2 78.6±3* 72.8±2 82.5±3.7* 

Triglycerides (mg/dl) 36.2±4 36.6±3.7 63.8±2 59.1±2.7 

HDL-C (mg/dl) 27.1±1.9 33.5±2.1* 38.1±2.2 39.2±1.7 

LDL-C(mg/dl) 35.3±2 41.7±2.5 27.5±1.9 36.9±3.2* 

VLDL-C (mg/dl) 7.2±0.8 6.7±0.4 12.7±0.4 11.8±0.5 
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Figure Legends 

 

Figure 1. Body weight (A) and relative food intake (B). Data are presented as the mean 

± SEM of 12 rats from 4 different litters. The upper panels, as an inset to each figure 

depict the area under the curve (AUC) for both periods, during MPH treatment (21 to 51 

days old) and after MPH treatment (52 to 110 days old). Significant differences between 

SAL and MPH group are represented by *p<0.05 and **p<0.01 by Student’s t test. SAL, 

saline; MPH, methylphenidate. 

Figure 2. Retroperitoneal, periepididymal and mesenteric fat pad stores at P52 (A) 

and P110 (B). Data are presented as the mean ± SEM of 9-12 rats from 4 different litters. 

Significant differences between SAL and MPH group are represented by *p<0.05 by 

Student’s t test. SAL, saline; MPH, methylphenidate. 

Figure 3. Blood glucose and insulin during ivGTT and Kitt. Glucose (A), insulin (B) 

and Kitt (C) of P52. Glucose (D), insulin (E) and Kitt (F) of P110. Data are presented as 

the mean ± SEM of 9-12 rats from 4 different litters. Significant differences between SAL 

and MPH group are represented by *p<0.05, **p<0.01 and ***p<0.001 by Student’s t 

test. SAL, saline; MPH, methylphenidate. 

Figure 4. Parasympathetic (A) and sympathetic (B) electrical nerve activity at P110. 

Data are presented as the mean ± SEM of 9-12 rats from 4 different litters. Significant 

differences between SAL and MPH group are represented by *p<0.05 by Student’s t test. 

SAL, saline; MPH, methylphenidate. 

Figure 5. Elevated T-maze - avoidance, merged escape and locomotion. ETM 

avoidance (A), merged escape (B) and locomotion (C) at P52. ETM avoidance (D), 

merged escape (E) and locomotion (F) at P110. Data are presented as the mean ± SEM of 

8 rats from 4 different litters. Significant differences between SAL and MPH group are 

represented by *p<0.05 by Student’s t test or Holm-Sidak’s post hoc test. SAL, saline; 

MPH, methylphenidate. 
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Abstract 29 

 30 

Maternal protein-caloric restriction during lactation can malprogram the offspring to a 31 

lean phenotype associated to metabolic dysfunction in early life and at adulthood. This 32 

programming is mediated by the milk offered to the pups and little is known about the 33 

modifications in milk composition derived from a nutritional insult. We investigated the 34 

relationship between nutritional stress, mother’s behavior and metabolism, milk 35 

composition and offspring parameters. Moreover, we focused on the role of HPA axis 36 

hyperactivation through lactation. To this, dams were fed with low-protein diet (LP, 4% 37 

protein) during the first two weeks of lactation or a normal protein diet (NP, 20% protein) 38 

all lactation period. Dams, milk, and offspring analysis were conducted at postnatal day 39 

(P) 7, P14 and P21. We observed body weight and food intake decrease in dams, 40 

associated to reduced fat pad stores and increased corticosterone levels at P14. The 41 

stressed LP dams demonstrated alterations in behavior and offspring care. Despite 42 

nutritional deprivation, dams adapted the metabolism to provide adequate energy supply 43 

to milk, however, we demonstrated elevated corticosterone and total fat levels at P14. 44 

Male offspring also showed increased corticosterone at P7, associated to a lean phenotype 45 

and alterations in white and brown adipose tissue morphology development. In 46 

conclusion, protein restriction diet exposure of dams during lactation promotes an 47 

increase in glucocorticoids levels in dams, milk, and offspring, associated to maternal 48 

behavior and milk composition alterations. Altogether, glucocorticoids and milk 49 

composition could play an important role in the metabolic programming induced by 50 

maternal undernutrition. 51 

 52 

Keywords: lactation; protein; milk; corticosterone. 53 

 54 



Introduction 55 

 56 

The increasing pandemic of cardiometabolic syndrome worldwide is evident and 57 

several of the diseases that appear in adulthood can have origins in early life [1,2]. The 58 

developmental origins of health and disease (DOHaD) concept describes through 59 

scientifical data the impact of maternal malnutrition [3], among other factors, in the 60 

physiological developmental and neuronal circuitry maturation of offspring. 61 

A protein restriction diet in rats is a well-established model used to investigate the 62 

link between early malnutrition and adult metabolic disorders [4] once maternal food 63 

restriction is an important insult during perinatal life. In particular, the suckling period 64 

constitutes an important window of susceptibility in rodents once the maturation of 65 

central nervous system (CNS) and endocrine organs occurs at the first weeks after birth 66 

[5]. Our previous studies showed that maternal protein-caloric restriction during lactation 67 

programs adult offspring to a lean phenotype, hypermetabolic status, and resistance to 68 

obesity [6,7]. 69 

The main factor involved in the neonatal growth and development is the milk 70 

offered to the offspring once maternal milk is widely known as the gold standard and best 71 

feeding source for newborns [8]. According to the World Health Organization (WHO), 72 

breastfeeding shows neurodevelopment benefits in a short and long-term way [9,10]. 73 

Epidemiologic evidence strongly suggest that breastfeeding protects against infections in 74 

the first years of life. Moreover, recent studies pointed that maternal milk could shield the 75 

offspring against metabolic disorders and obesity in childhood and adulthood [11]. 76 

Despite all the benefits, little attention has been given to the quality of the milk available 77 

during lactation. The amount of macronutrients, micronutrients, and hormones levels may 78 

be involved in the offspring metabolic programing [12]. Nonetheless, the implications of 79 



maternal undernutrition on milk composition and their consequences to neonatal 80 

development have been poorly studied. 81 

The content of carbohydrates, lipids and proteins present in breast milk is 82 

regulated to guarantee the normal development of the offspring; therefore, a healthy 83 

nutritional environment in perinatal life is important to the quality of the milk. 84 

Physiologically, the concentration of macronutrients in the milk of healthy mothers 85 

changes through the stages of lactation. [13]. However, perinatal intake of maternal 86 

protein, for example, has an impact on the composition of milk protein in the middle of 87 

lactation [11]. In addition, the concentrations of lipids and carbohydrates can be also 88 

altered and, consequently, affect the total energy density in the milk, programming the 89 

offspring to metabolic disorders at adulthood [14]. 90 

Among the hormones found in milk, glucocorticoids, especially corticosterone, 91 

play a critical role in early development [15,16]. They have been highlighted as an 92 

important hormone involved in the link between stressful conditions at perinatal life, such 93 

as malnutrition, and cardiometabolic diseases at adulthood [17]. Glucocorticoids are 94 

essential to the development/maturation of tissues/organs in the intrauterine and perinatal 95 

life. In addition, they are involved in glucose metabolism, lipid biosynthesis and 96 

distribution, food intake and thermogenesis [18]. 97 

 Hypothalamus-pituitary-adrenal (HPA) axis regulates as the negative feedback 98 

the production and secretion of glucocorticoids [19,20]. Some manipulations at postnatal 99 

life alter the functioning of the HPA axis at adulthood, including neonatal handling, 100 

maternal deprivation, exposure to synthetic glucocorticoids, modifications of maternal 101 

behavior and nutrient restriction [21,22]. The literature shows evidence about the strongly 102 

effect of dietary restriction on maternal behavior and HPA axis dysfunction [23]. It is 103 

known that modifications in maternal care is a critical influence in the development, 104 



therefore, variations in maternal behavior regulate the neuroendocrine, behavioral, 105 

emotional, and cognitive development of pups [24]. However, the exactly impact of 106 

malnutrition during lactation over hyperactivation of HPA axis, changes in maternal 107 

behavior and hormonal content in milk has not been precisely studied.  108 

Although previously studies have shown the impact of protein-caloric restriction 109 

during lactation on the offspring metabolism at weaning and adulthood [25,26], few 110 

studies observed the relationship between maternal behavior, milk composition and pups 111 

metabolism through lactation as a potential mechanisms behind this programming. Thus, 112 

in this study, we aimed to evaluate whether undernutrition, a stressful insult, can 113 

hyperactivate the HPA axis inducing changes in maternal behavior, milk composition and 114 

metabolic features in offspring at early life. 115 

 116 
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 129 



Materials and Methods 130 

 131 

Ethical approval 132 

All experiments were conducted according to the ARRIVE guidelines [27] and with 133 

Brazilian Association for Animal Experimentation (COBEA) standards. Protocols were 134 

approved by the Ethics Committee in Animal Research of the State University of Maringa 135 

(protocol number 5409020520). 136 

 137 

Maternal dietary manipulation and animal groups 138 

Lactating Wistar rat dams (n= 15 rat dams from each experimental group) were fed either 139 

normal-protein rodent chow containing 20.5% protein (NP group; Nuvilab®, Curitiba, 140 

PR, Brazil) throughout lactation or an isocaloric low-protein diet containing 4% protein 141 

(LP group) from delivery until the 14th day of lactation, returning to a normal diet for the 142 

remaining third part of the lactation period. The composition of low-protein diet has been 143 

previously described [28]. At birth, the litter size was adjusted to eight pups (four male 144 

and four female) per lactating dam. Only male offspring was analyzed in this experiment. 145 

Dams and male offspring of NP and LP groups were analyzed at postnatal day (P) 7, 14 146 

and 21 (n= 5 litters per group at each age). Throughout the experimental period, the 147 

animals were kept under controlled temperature (23 ± 2°C) and photoperiod (7:00 a.m. 148 

to 7:00 p.m., light cycle) conditions. The animals received water and food ad libitum. 149 

 150 

Body weight, food intake and fat pad stores measurements  151 

Rat dams and offspring were weighted every two days during the lactation period. Food 152 

intake of rat dams was determined every two days and calculated as the difference 153 



between the amount of diet remaining (Df) and the amount presented previously (Di) 154 

divided by the number of days: [FI(g) = (Df –Di)/2]. The area under curve (AUC) was 155 

calculated to body weight (bw) and food intake (fi). At P7, 14 and 21 rat dams were 156 

anaesthetized (thiopental, 45 mg/kg of bw), decapitated and laparotomized to remove 157 

their retroperitoneal, uterine and ovarian fat pads stores. At P21, male offspring 158 

underwent the same procedure to removal their retroperitoneal, periepidydimal, 159 

mesenteric, brown fat pads and adrenal gland. The weight of fat pads and adrenal gland 160 

were expressed in relation to the bw of each animal (g/100 g of bw). 161 

 162 

Glucose metabolism assessment of dams 163 

At P7, 14 and 21 (n= 5 dams per group at each age) of lactation, rat dams were submitted 164 

to 6-hour fast to perform intraperitoneal insulin tolerance test (ipITT).  They received an 165 

injection of insulin (1 U/kg of bw), and blood glucose was measured using a glucometer, 166 

as previously reported [29]. Glucose was determined at 0, 15, 30, 45 and 60 minutes. 167 

Subsequently, the rate of glucose tissue uptake or the rate constant for plasma glucose 168 

disappearance (Kitt) was calculated. Additionally, after two days, dams were subjected to 169 

the intraperitoneal glucose tolerance test (ipGTT), as previously described [30]. After a 170 

12-hour fast, blood samples were removed by the tail before the injection of glucose (2 171 

g/kg of bw) (0 min) and 15, 30, 60 and 120 min afterward. Blood glucose was measured 172 

using a glucometer. The glucose response during the test was calculated by AUC. 173 

 174 

Maternal behavior analysis 175 

The maternal behavior of lactating dams was scored in alternate days during four periods 176 

of 72-min observation sessions during 21 days of lactation (starting from P2, until P20). 177 



Observations occurred at regular times with three periods during the light phase (8:00 178 

AM, 12:00 AM and 16:00 AM) and one period during the dark phase (20:00 PM) of the 179 

light-dark cicle. Within each session, the behavior of each mother was scored every 3 180 

minutes (25 observations per 4 period per day for a total of 100 observations per mother 181 

per day) we identified five parameters considered maternal and four non-maternal 182 

parameters, as following: (1) licking pups (either its body surface or its anogenital region), 183 

(2) nursing pups in an arched-back posture, (3) “blanket” posture in which the mother 184 

lays over the pups, (4) passive posture in which the mother is lying either on her back or 185 

side while the pups nurse, (5) nest building, (6) feeding, (7) exploring the cage housing, 186 

(8) movement away from the pups and (9) self-grooming [24,31]. Data are reported as 187 

the percentage of observations in which pups received the target behavior (number of 188 

observations in which the target behavior was recorded divided by the total number of 189 

observations × 100). 190 

 191 

Milk sample collection and nutritional analysis 192 

For milk sample collection, dams at P7, 14 and 21 (n= 5 dams per group at each age) of 193 

lactation were separated from their pups for 2 hours before the procedure. The fed dams 194 

were anesthetized (thiopental, 45 mg/kg of bw, i.p.) and received an injection (2.5 UI/kg 195 

of bw, i.p.) of synthetic oxytocin (Oxytocin®, Chemical Union, Embu, São Paulo, Brazil) 196 

to induce milk secretion. Breast milk samples were collected by manually massaging the 197 

nipple (0.5ml/dam) and stored at −20 °C for subsequent analysis. Milk samples were 198 

diluted (1:20 v/v) in saline solution (0.9% NaCl) for measurements [32]. 199 

Total protein content was evaluated by enzymatic colorimetric method by a commercial 200 

kit (Gold Analisa® Belo Horizonte, Minas Gerais, Brazil), according to the 201 



manufacturer’s instructions [33]. Total carbohydrate content in milk was analyzed using 202 

the phenol-sulfuric acid method in microplate format, as previously described [34]. Total 203 

fat content in milk samples was measured by the Folch method [35,36]. 204 

 205 

Biochemical detections in plasma and milk 206 

Dams and pups serum glucose concentration were measured by the glucose oxidase 207 

method using a commercial kit (GoldAnalisa®; Belo Horizonte, MG, Brazil) [37]. 208 

Triglycerides and protein were measured in plasma samples by colorimetric method using 209 

commercial kits (Gold Analisa®; Belo Horizonte, MG, Brazil) [33,38]. 210 

 211 

Corticosterone levels in plasma and milk 212 

The plasma levels of corticosterone (catalogue number ADI-900-097, Enzo® Life 213 

Sciences, Plymouth Meeting, PA, USA) was quantified by commercial ELISA kit 214 

following the manufacturer’s recommendations. The intra- and interassay coefficients of 215 

variation were 7.7% and 9.7% [26,39].  216 

 217 

Histology of white adipose tissue (WAT) and brown adipose tissue (BAT) 218 

At euthanasia, P21 pups had the retroperitoneal white adipose tissue (rWAT) and 219 

interscapular brown adipose tissue (iBAT) samples removed, placed in 4% 220 

paraformaldehyde, fixed for 24 hours, and then embedded in paraffin, as previously 221 

described [40]. Five µm sections for every 30 µm interval were made using a microtome 222 

and placed on glass slides. The slices were stained with hematoxylin and eosin, and the 223 

sections were examined using light microscopy (5 optic zones of 40x per sections). 224 



Statistical analysis 225 

The results are given as the mean ± the SEM and were subjected to Student’s t-test, where 226 

P<0.05 was considered statistically significant. In maternal behavior parameters 227 

differences between groups was analyzed by repeated measures two-way ANOVA with 228 

lactation days and LP diet as factors. Post hoc comparisons were performed by the Holm-229 

Sidak’s test. Tests were performed using GraphPad Prism version 7.0 for Windows 230 

(GraphPad Software Inc., San Diego, CA, USA). 231 

 232 
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 245 



Results 246 

Maternal body composition, food intake and biochemical parameters. 247 

As shown in AUC of Figure 1A, during lactation, LP dams had 17.6% (P<0.001) of 248 

reduction in body weight compared to NP mother. Associated with that, we observed a 249 

48.4% lower food intake in LP dams compared to the control group (P<0.0001, Fig. 1B). 250 

Table 1 shows that LP dams displayed smaller retroperitoneal and uterine fat pads at P21 251 

(32% and 11%, respectively, P<0.05) than NP dams. 252 

In comparison with NP dams, in fasting conditions, LP mothers showed a reduction in 253 

protein levels at P14 (38%, P<0.01, Table 1). At the same stage of lactation (P14), LP 254 

dams presented 97% (P<0.01) higher triglycerides levels compared to NP group. In 255 

addition, LP dams displayed hyperglycemia at P21 (10.7%, P<0.05, Table 1) and 256 

presented less glucose levels during ipGTT at P7 (16.1%, P<0.01, Table 1) and 14 257 

(14.1%, P<0.05, Table 1). Insulin sensitivity was not altered in LP dams through lactation, 258 

as demonstrated by Kitt in Table 1. As shown in Figure 1C, LP dams have higher levels 259 

of corticosterone at P14 (412%, P<0.01) than NP mothers.  260 

 261 

Maternal behavior through lactation 262 

According to two-way ANOVA, there was no significant effect of LP diet, lactational day 263 

(LD) or interaction between factors on observation percentage of blanket nursing (LP diet 264 

factor: P=0.67, LD factor: P=0.06, interaction: P=0.44, Fig. 2D). There is a significant 265 

effect of LD, but no significant effect of LP diet and interaction between factors on 266 

observation percentage of nest building (LP diet factor: P=0.24, LD factor: P<0.001, 267 

interaction: P=0.19, Fig. 2A), licking pups (LP diet factor: P=0.06, LD factor: P<0.0001, 268 

interaction: P=0.09, Fig. 2B) and total maternal behavior (LP diet factor: P=0.53, LD 269 



factor: P<0.0001, interaction: P=0.22, Fig. 2F). There is an effect of LP diet and LD, 270 

without difference in interaction on observation of passive nursing (LP diet factor: 271 

P<0.001, LD factor: P<0.01, interaction: P= 0.08, Fig. 2E). We observed an effect of LP 272 

diet, LD, and interaction between factors on observation percentage of arched nursing 273 

(LP diet factor: P<0.05, LD factor: P<0.0001, interaction: P<0.01, Fig. 2C). 274 

Regarding non-maternal behavior, we showed no significant effect of LP diet, LD, and 275 

interaction between factors in the percentage of self-grooming (LP diet factor: P=0.35, 276 

LD factor: P=0.07, interaction: P=0.3, Fig. 3D). There is an effect of LD and an 277 

interaction on observation percentage of feeding (LP diet factor: P=0.39, LD factor: 278 

P<0.0001, interaction: P<0.001, Fig. 3A). It was observed an effect of LD and interaction 279 

on observation percentage of total non-maternal behavior (LP diet factor: P=0.71, LD 280 

factor: P<0.0001, interaction: P<0.05, Fig. 3E). Finally, there were a significant effect in 281 

LP diet, LD and interaction between factors on exploring behavior (LP diet factor: 282 

P<0.05, LD factor: P<0.0001, interaction: P<0.0001, Fig. 3B) and non-exploring (LP diet 283 

factor: P<0.05, LD factor: P<0.0001, interaction: P<0.0001, Fig. 3C). 284 

 285 

Milk composition assessment  286 

Figure 4 shows the nutritional and hormonal parameters of LP dams milk. Protein 287 

concentration was increased at P7 (135%, P<0.01, Fig. 4A) and decreased at P21 (34%, 288 

P<0.05, Fig. 4A) in LP dams milk, without change at P14. Total fat was increased in LP 289 

milk at P7 and 14 by 83.3% (P<0.01, Fig. 4B) and 111% (P<0.0001, Fig. 4B) respectively. 290 

At P21, total fat content at LP milk was 43.4% (P<0.05, Fig. 4B) reduced when compared 291 

to NP samples. Furthermore, as showed in Figure 4C, total carbohydrates at LP milk were 292 

increased at P7 (53.5%, P<0.01) compared to NP milk. At P21, this parameter was 293 



decreased by 68% (P<0.0001) in LP dams milk. At P14 not significantly change was 294 

observed in total carbohydrates concentrations. In Figure 4D, we showed elevated 295 

corticosterone levels in milk samples of LP group at P14 (133.3%, P<0.05). 296 

 297 

Pups body composition 298 

As expected, the body weight of LP pups through lactation was decreased by 40.5%, 299 

indicated in AUC (P<0.001, Fig. 5A) and by 35% at weaning (P<0.001, Table 2). At P21, 300 

LP rats presented smaller retroperitoneal (41.19%, P<0.001), periepidydimal (33.98%, 301 

P<0.001), mesenteric (17.89%, P<0.05) and brown (15.94%, P<0.01) fat pads than NP 302 

rats (Table 2). Adrenal gland weight was similar between groups, as demonstrated in 303 

Table 2. 304 

 305 

Pups’ biochemical parameters 306 

Table 3 shows that LP pups reduced protein plasmatic levels at P7 and 14 (12.25%, 307 

P<0.05 and 26.38%, P<0.0001, respectively). At P21 there is no difference between 308 

groups in protein concentration. Serum triglycerides was higher in LP pups at P21 309 

(35.74%, P<0.01. Table 3) than control group. Moreover, LP pups are hyperglycemic at 310 

P7 (54.26%, P<0.01, Table 3). According to the Figure 5B, LP pups showed elevated 311 

levels of corticosterone at P7 (92.22%, P<0.05), without significantly alteration at P14. 312 

 313 

Pups’ morphometric analysis of rWAT and iBAT 314 

According to Figure 6, LP rats had white adipocytes area 45.28% lower than NP rats 315 

(P<0.0001, Fig. 6A) and the number of cells was 64.9% higher in LP group (P<0.0001, 316 



Fig. 6B). About iBAT, Figure 6C and 6D demonstrated an increase by 30.75% and 37.7% 317 

in adipocytes area and number of cells in LP rats compared to NP ones, respectively 318 

(P<0.0001). 319 
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Discussion 347 

 348 

 There is a gap in the understanding of the relationship between maternal nutrition 349 

during lactation, milk composition and metabolic programming features in offspring. 350 

Thus, in the present study, we analyzed the impact of a low-protein diet at the first two 351 

weeks of lactation on maternal metabolism and behavior and the correlation with milk 352 

composition and offspring metabolism through lactation period. The major finding was 353 

that stress nutritional provoked a hyperactivation of HPA axis in dams and in offspring, 354 

through elevated corticosterone in milk. In addition, macronutrients balance in milk was 355 

modified by maternal protein-caloric restriction and this may be related to changes in 356 

metabolism and tissue development in the offspring. 357 

 A low-protein diet during lactation provoked low body weight and food intake in 358 

dams and in the offspring through this period, as previously observed [12,41]. The 359 

maternal reduced weight can be attributed to the lower amount of fat stores. In addition, 360 

numerous metabolic adaptations occur during lactation in dams to support adequate milk 361 

synthesis with the necessary balance of compounds to offspring development [42]. In this 362 

study, malnourished mothers probably undergo metabolic adaptations, including 363 

increased muscle proteolysis and lipolysis. Likewise, the high concentration of glucose 364 

and triglycerides in maternal plasma, observed also in 10% protein restriction at perinatal 365 

life [35] consists of an adaptation to guarantee the energy supply to offspring through 366 

milk. 367 

 After delivery, dams show the ability to respond immediately to their offspring 368 

through maternal care. This maternal behavior is regulated by circulating hormones such 369 

as estrogen, progesterone, oxytocin, prolactin, and corticosterone [43]. Interestingly, in 370 

this study, in the middle of lactation LP dams presented elevated corticosterone levels. It 371 

is already known that caloric restriction diet increases total daily glucocorticoids release 372 



[44], indicating an activation of HPA axis. Experiments showed that the removal of 373 

adrenal gland, the source of corticosterone, reduced maternal behaviors such as licking 374 

pups and arched nursing. Furthermore, there is evidence that corticosterone improves the 375 

mothers memory about pups in the postpartum period [45].  In our study, LP dams showed 376 

increase in some maternal behaviors during lactation, however, they spent more time 377 

exploring the environment compared to NP mothers. The maternal response to stress 378 

during perinatal period requires further investigation, since some studies indicate a state 379 

of anxiety that leads to greater care to offspring [46] and other studies show maternal 380 

neglect and increased non-maternal behaviors [47]. 381 

 There is evidence about retardation in the decline of maternal behavior in low 382 

protein fed dams [23]. One of the probable reasons is that milk production was lower [12], 383 

which can contribute to low offspring milk consumption and, to compensate this, pups 384 

present increase in their feeding behavior. Associated to maternal metabolic and 385 

behavioral changes during lactation, milk composition of malnourished mothers was 386 

altered. At the early stage of lactation, nutrients and adequate energy supply must be given 387 

to the pups, which cannot synthetize many important metabolites to their development 388 

[48]. In this way, we observed that malnourished mothers adapted their metabolism, 389 

despite inadequate food intake, to maintain adequate protein levels in milk for as long as 390 

possible through lactation. The utilization of tissue protein reserves, especially muscles, 391 

has been suggested to be important in allowing lactating rats to sustain lactational 392 

performance under bad nutritional conditions [49]. 393 

The main carbohydrate in mammalian milk is generally the disaccharide lactose, 394 

synthetized in the mammary glands [50] and maternal plasma glucose is the predominant 395 

source of carbon for lactose synthesis [51]. We observed an elevation of total 396 

carbohydrates in the beginning of lactation, however, at weaning low protein fed dams 397 



milk had lower carbohydrate content. At the same time, plasma glucose of dams was 398 

increased, as previously reported [35]. Indeed, in the period of nutritional recovery, 399 

although there is a high concentration of plasma glucose, communication of this nutrient 400 

with mammary gland was impaired. The mechanisms behind this process are unknown, 401 

however, it is important to point that the time and duration of low protein diet offered to 402 

the dams may result in different alterations in milk composition. 403 

 Interestingly, until P14 milk from low protein fed dams showed an elevation in 404 

total fat content, as already observed by other studies [11,35,52]. It has been demonstrated 405 

an increase in fatty acid mobilization from the mammary glands in malnourished dams, 406 

even though the low protein diet impairs the glands differentiation, proliferation, and 407 

development during lactation [35,53]. Adipose tissue and liver may be involved in the 408 

release of fat to mammary glands once protein restriction was shown to cause a fatty liver 409 

phenotype in dams [54,55]. The exact mechanisms by which the mother and their 410 

mammary glands mobilize more fat for milk are not known, this subject requires further 411 

investigation.  412 

 After birth, the pups undergo metabolic changes that are key in their healthy 413 

development. Fetal life is characterized by the predominant use of glucose as a metabolic 414 

fuel, however, in lactation there is a shift to a lipid-based diet, as lipids are very abundant 415 

in milk [56]. For this, a coordinate regulation of key genes expression occurs at the 416 

beginning of lactation to allow the pups to deal with the large amount of fatty acids 417 

available from milk and PPARα has a major role in this process. The higher quantity of 418 

free fatty acids provided by LP dams milk activates offspring PPARα expression more 419 

than in control offspring [57]. Fibroblast growth factor 21 (FGF21) is a recent found 420 

metabolic regulator, which secretion by the liver are controlled by PPARα. FGF21 421 

stimulates lipolysis in white adipose tissue and enhances thermogenesis in brown adipose 422 



tissue. Physiologically, at the first week of lactation, FGF21 rises in pups and decrease in 423 

the second week [56,58]. An elevated percentage of lipids in milk may prolong the 424 

duration of the FGF21 peak in lactation, programming the offspring to an elevated status 425 

of lipolysis and lean phenotype at weaning and adulthood [6]. However, we did not 426 

measure the levels of FGF21 and PPARα in pups in the present study, therefore this 427 

hypothesis needs more study.  428 

 The levels of glucocorticoids at perinatal life influence the growth and 429 

differentiation of many tissues [59]. To adequate development, activity of adrenal gland 430 

decreases after birth and consequently corticosterone concentration in rat’s plasma stays 431 

low in the first 12 days. Moreover, mammary gland present a mechanism to keep a low 432 

and stable glucocorticoids concentration in milk [16]. In the present study, we found 433 

elevated corticosterone levels in milk and in offspring of LP group in the very beginning 434 

of lactation, indicating a perturbation of HPA axis and consistently to plasma glucose 435 

increase in rats at P7 [60]. It is interesting that glucocorticoids and FGF21 are regulated 436 

in a feed-forward way, indeed, in a food privation situation chronically elevated FGF21 437 

levels increases corticosterone production, and, in the same line, glucocorticoids directly 438 

regulate the expression of FGF21 gene and their release [61].  439 

 At adult life, low protein during lactation rats shows elevated sympathetic activity 440 

and vagal hypoactivity [6,7]. Those physiological alterations were probably programmed 441 

at early life as a consequence of stress exposure and adipose tissue differentiation and 442 

function was affected in a short and long-term way [62]. At weaning, low protein rats 443 

have lower adipocyte area in WAT, consistently with smaller fat pads. Also, LP rats 444 

present reduced weight, increased number of cells and adipocytes area in BAT, which is 445 

associated to higher thermogenesis and energy expenditure [63,64]. Recently, was 446 

demonstrated that stress, through HPA axis and Sympathetic Nervous System (SNS) 447 



activation, result in a lean phenotype and/or obesity resistance whether brown adipose 448 

tissue is recruited, and thermogenesis is increased [62].  449 

 In conclusion, protein restriction diet exposure of dams at the lactational phase 450 

promotes an increase in corticosterone plasma levels in dams, offspring and milk. In 451 

addition, maternal behavior was altered in response to a nutritional stress condition. 452 

Altogether, increased HPA axis activity in dams and offspring, associated to high fat 453 

content in milk at the first days of lactation could play an important role in the metabolic 454 

programming induced by maternal undernutrition, including the obesity resistant 455 

phenotype of these animals at adulthood. Thereby, further studies are needed to clarify 456 

the mechanisms involved in programming through nutritional stress during lactation. 457 
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Table 1 – Biometrical and biochemical parameters of dams during lactation. 

       

Parameters P7 P14 P21 

 NP LP NP LP NP LP 

Retroperitoneal fat pad (g/100g bw) 1.15±0.06 1.28±0.07 1.09±0.14 0.96±0.13 0.80±0.07 0.54±0.08* 

Uterine fat pad (g/100g bw) 0.75±0.04 0.70±0.02 0.74±0.1 0.59±0.01 0.43±0.01 0.37±0.02* 

Ovarian fat pad (g/100g bw) 0.75±0.11 1.07±0.11 0.68±0.07 0.62±0.07 0.50±0.04 0.40±0.04 

Serum protein (g/dl) 5.68±0.32 5.32±0.23 7.06±0.36 4.31±0.48** 6.43±0.15 6.52±0.20 

Serum triglycerides (mg/dl) 93.25±11.5 89.75±8.45 85.75±7.5 168.9±23.7** 99.38±13.31 108.5±11.69 

Serum glucose (mg/dl) 103.2±3.83 99±3.01 99.67±5.27 97±1.26 79.2±1.71 87.71±1.92* 

Kitt (%) min 1.93±0.16 2.05±0.16 1.12±0.14 1.16±0.09 1.58±0.08 1.73±0.22 

AUC ipGTT 19605±462 16431±745** 18731±467 16080±649* 13424±465 15010±623 

Data are presented as the mean ± SEM obtained from 5-8 dams in each experimental group. Significant differences 

between NP and LP group are represented by *p<0.05 and ** p<0.01 by Student’s t test. NP, normal-protein; LP, 

low-protein; Kitt (%) min, glucose disappearance rate at insulin tolerance test; AUC ipGTT, AUC from glucose 

tolerance test. 

 

 

 

Table 2 – Biometrical parameters of pups at P21. 

   

Parameters P21 

 NP LP 

Body weight (g) 45.2±1.8 29.2±2.0*** 

Retroperitoneal fat pad (g/100g bw) 0.15±0.01 0.09±0.01*** 

Periepidydimal fat pad (g/100g bw) 0.16±0.009 0.10±0.008*** 

Mesenteric fat pad (g/100g bw) 0.31±0.02 0.25±0.02* 

Brown fat pad (g/100g bw) 0.28±0.007 0.23±0.01** 

Adrenal weight (g/100g bw) 0.0176±0.001 0.0175±0.001 

Data are presented as the mean ± SEM obtained from 14-17 rats from 4 different litters in each experimental group. 

Significant differences between NP and LP group are represented by *p<0.05, ** p<0.01 and *** p<0.001 by 

Student’s t test. NP, normal-protein; LP, low-protein. 

 

 

 

 



Table 3 - Biochemical parameters of pups through lactation. 

       

Parameters P7 P14 P21 

 NP LP NP LP NP LP 

Serum protein (g/dl) 3.1±0.13 2.72±0.11* 4.32±0.12 3.18±0.11**** 4.53±0.09 4.53±0.09 

Serum triglycerides (mg/dl) 90.88±14.96 70.38±8.77 123.4±6.71 132.8±14.53 132.6±6.5 180±15.13** 

Serum glucose (mg/dl) 71.63±3.79 110.5±12.18** 110.8±4.72 117±11.53 115.7±4.16 114.1±4.29 

Data are presented as the mean ± SEM obtained from 8 pups from 4 different litters in each experimental group. 

Significant differences between NP and LP group are represented by *p<0.05, ** p<0.01 and **** p<0.0001 by 

Student’s t test. NP, normal-protein; LP, low-protein. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure Legends 

 

Figure 1- Body weight (A), food intake (B) and corticosterone (C) of dams during 

lactation. Data are presented as the mean ± SEM of 4 – 6 dams per group. The lateral 

panels, as an inset to figures A and B depict the area under the curve (AUC). Figure C 

shows corticosterone levels at P14. Significant differences between NP and LP group are 

represented by **p<0.01, ***p<0.001 and ****p<0.0001 by Student’s t test. NP, normal-

protein; LP, low-protein. 

Figure 2 - Composite maternal behavior of lactating rats. Nest building (A), licking 

pups (B), arched nursing (C), blanket nursing (D), passive nursing (E) and total maternal 

behavior (F). Data are presented as the mean ± SEM of percentage of episodes across 100 

observations per day. NP, normal-protein; LP, low-protein. 

Figure 3 – Composite non-maternal behavior of lactating rats. Feeding (A), exploring 

(B), non-exploring (C), self-grooming (D) and total non-maternal behavior (E). Data are 

presented as the mean ± SEM of percentage of episodes across 100 observations per day. 

NP, normal-protein; LP, low-protein. 

Figure 4 – Protein (A), total fat (B), total carbohydrates (C) and corticosterone (D) 

of milk during lactation. Data are presented as the mean ± SEM of 5 – 10 milk samples 

per group. Nutritional parameters of milk were measured at P7, 14 and 21 (A, B, C). 

Figure D shows corticosterone levels at P14. Significant differences between NP and LP 

group are represented by *p<0.05, **p<0.01 and ****p<0.0001 by Student’s t test. NP, 

normal-protein; LP, low-protein. 

Figure 5 – Body weight (A) and corticosterone levels (B, C) of pups during lactation. 

Data are presented as the mean ± SEM of 8 – 10 pups from 4 different litters per group. 

Figures B and C shows corticosterone levels at P7 and P14. Significant differences 

between NP and LP group are represented by *p<0.05 and ***p<0.001 by Student’s t 

test. NP, normal-protein; LP, low-protein. 

Figure 6 - Histology of retroperitoneal white adipose tissue (rWAT) and 

interscapular brown adipose tissue (iBAT) at P21. White adipocytes area (A), number 

of cells (B). Brown adipocytes area (C) and number of cells (D). Data are presented as 

the mean ± SEM of 5-6 pups from 4 different litters per group. Significant differences 



between NP and LP group are represented by ****p<0.0001 by Student’s t test. NP, 

normal-protein; LP, low-protein. 

 

 

 

 


